skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions

Abstract

Our current understanding of the electronic state of iron in lower-mantle minerals leads to a 8 considerable disagreement in bulk sound speed with seismic measurements if the lower mantle 9 has the same composition as the upper mantle (pyrolite). In the modelling studies, the content 10 and oxidation state of Fe in the minerals have been assumed to be constant throughout the lower 11 mantle. Here, we report high pressure experimental results in which Fe becomes dominantly 1 Fe2+ 12 in bridgmanite synthesized at 40–70GPa and 2,000K, while it is in mixed oxidation state (Fe3+/ P Fe = 60%) in the samples synthesized below and above the pressure range. Little Fe3+ 13 14 in bridgmanite combined with the strong partitioning of Fe2+ into ferropericlase will alter the Fe 15 content for these minerals at 1,100–1,700 km depths. Our calculations show that the change in 16 iron content harmonizes the bulk sound speed of pyrolite with the seismic values in this region. 17 Our experiments support no significant changes in bulk composition for most of the mantle, 18 while possible changes in physical properties and processes (such as viscosity and mantle flow 19 patterns) in the mid mantle.

Authors:
ORCiD logo; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1376706
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 114; Journal Issue: 25; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
Ferrous-Iron-Rich

Citation Formats

Shim, Sang-Heon, Grocholski, Brent, Ye, Yu, Alp, E. Ercan, Xu, Shenzhen, Morgan, Dane, Meng, Yue, and Prakapenka, Vitali B. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. United States: N. p., 2017. Web. doi:10.1073/pnas.1614036114.
Shim, Sang-Heon, Grocholski, Brent, Ye, Yu, Alp, E. Ercan, Xu, Shenzhen, Morgan, Dane, Meng, Yue, & Prakapenka, Vitali B. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. United States. doi:10.1073/pnas.1614036114.
Shim, Sang-Heon, Grocholski, Brent, Ye, Yu, Alp, E. Ercan, Xu, Shenzhen, Morgan, Dane, Meng, Yue, and Prakapenka, Vitali B. Mon . "Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions". United States. doi:10.1073/pnas.1614036114.
@article{osti_1376706,
title = {Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions},
author = {Shim, Sang-Heon and Grocholski, Brent and Ye, Yu and Alp, E. Ercan and Xu, Shenzhen and Morgan, Dane and Meng, Yue and Prakapenka, Vitali B.},
abstractNote = {Our current understanding of the electronic state of iron in lower-mantle minerals leads to a 8 considerable disagreement in bulk sound speed with seismic measurements if the lower mantle 9 has the same composition as the upper mantle (pyrolite). In the modelling studies, the content 10 and oxidation state of Fe in the minerals have been assumed to be constant throughout the lower 11 mantle. Here, we report high pressure experimental results in which Fe becomes dominantly 1 Fe2+ 12 in bridgmanite synthesized at 40–70GPa and 2,000K, while it is in mixed oxidation state (Fe3+/ P Fe = 60%) in the samples synthesized below and above the pressure range. Little Fe3+ 13 14 in bridgmanite combined with the strong partitioning of Fe2+ into ferropericlase will alter the Fe 15 content for these minerals at 1,100–1,700 km depths. Our calculations show that the change in 16 iron content harmonizes the bulk sound speed of pyrolite with the seismic values in this region. 17 Our experiments support no significant changes in bulk composition for most of the mantle, 18 while possible changes in physical properties and processes (such as viscosity and mantle flow 19 patterns) in the mid mantle.},
doi = {10.1073/pnas.1614036114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
issn = {0027-8424},
number = 25,
volume = 114,
place = {United States},
year = {2017},
month = {6}
}

Works referenced in this record:

Viscosity jump in Earths mid-mantle
journal, December 2015


The valence state and partitioning of iron in the Earth's lowermost mantle
journal, January 2011

  • Sinmyo, Ryosuke; Hirose, Kei; Muto, Shunsuke
  • Journal of Geophysical Research, Vol. 116, Issue B7
  • DOI: 10.1029/2010JB008179

The spin state of iron in minerals of Earth's lower mantle: SPIN STATE OF IRON
journal, June 2005

  • Sturhahn, Wolfgang; Jackson, Jennifer M.; Lin, Jung-Fu
  • Geophysical Research Letters, Vol. 32, Issue 12
  • DOI: 10.1029/2005GL022802

Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data
journal, March 2017

  • Kurnosov, A.; Marquardt, H.; Frost, D. J.
  • Nature, Vol. 543, Issue 7646
  • DOI: 10.1038/nature21390

Elasticity of (Mg,Fe)O Through the Spin Transition of Iron in the Lower Mantle
journal, January 2008


Spin Transition Zone in Earth's Lower Mantle
journal, September 2007


Thermal pressure in the laser-heated diamond-anvil cell: An X-ray diffraction study [Thermal pressure in the laser-heated diamond-anvil cell: An X-ray diffraction study]
journal, October 1998

  • Andrault, Denis; Fiquet, Guillaume; Itié, Jean-Paul
  • European Journal of Mineralogy, Vol. 10, Issue 5
  • DOI: 10.1127/ejm/10/5/0931

Shear deformation of bridgmanite and magnesiowustite aggregates at lower mantle conditions
journal, December 2015


High-pressure Raman spectroscopy of diamond anvils to 250GPa: Method for pressure determination in the multimegabar pressure range
journal, October 2004

  • Akahama, Yuichi; Kawamura, Haruki
  • Journal of Applied Physics, Vol. 96, Issue 7
  • DOI: 10.1063/1.1778482

Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth's lower mantle: IRON PARTITIONING BETWEEN Mg-Pv AND Fp
journal, August 2012

  • Nakajima, Yoichi; Frost, Daniel J.; Rubie, David C.
  • Journal of Geophysical Research: Solid Earth, Vol. 117, Issue B8
  • DOI: 10.1029/2012JB009151

Spin Transitions in Mantle Minerals
journal, May 2014


Evidence for deep mantle circulation from global tomography
journal, April 1997

  • van der Hilst, R. D.; Widiyantoro, S.; Engdahl, E. R.
  • Nature, Vol. 386, Issue 6625
  • DOI: 10.1038/386578a0

Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra
journal, April 2002


Spin transition and equations of state of (Mg, Fe)O solid solutions
journal, January 2007

  • Fei, Yingwei; Zhang, Li; Corgne, Alexandre
  • Geophysical Research Letters, Vol. 34, Issue 17
  • DOI: 10.1029/2007GL030712

Stable intermediate-spin ferrous iron in lower-mantle perovskite
journal, September 2008

  • McCammon, C.; Kantor, I.; Narygina, O.
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo309

Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Effects of the Fe3+ spin transition on the properties of aluminous perovskite—New insights for lower-mantle seismic heterogeneities
journal, October 2011

  • Catalli, Krystle; Shim, Sang-Heon; Dera, Przemyslaw
  • Earth and Planetary Science Letters, Vol. 310, Issue 3-4
  • DOI: 10.1016/j.epsl.2011.08.018

MÖSsbauer Spectroscopy of Earth and Planetary Materials
journal, May 2006


Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle
journal, March 2004

  • Frost, Daniel J.; Liebske, Christian; Langenhorst, Falko
  • Nature, Vol. 428, Issue 6981
  • DOI: 10.1038/nature02413

Double-sided laser heating system at HPCAT for in situ x-ray diffraction at high pressures and high temperatures
journal, June 2006


Iron Partitioning and Density Changes of Pyrolite in Earth’s Lower Mantle
journal, December 2009

  • Irifune, Tetsuo; Shinmei, Toru; McCammon, Catherine A.
  • Science, Vol. 327, Issue 5962
  • DOI: 10.1126/science.1181443

Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity: SUBDUCTED SLABS IN THE TRANSITION ZONE
journal, November 2013

  • Fukao, Yoshio; Obayashi, Masayuki
  • Journal of Geophysical Research: Solid Earth, Vol. 118, Issue 11
  • DOI: 10.1002/2013JB010466

Thermal equation of state of lower-mantle ferropericlase across the spin crossover: THERMAL EOS OF FERROPERICLASE
journal, December 2011

  • Mao, Zhu; Lin, Jung-Fu; Liu, Jin
  • Geophysical Research Letters, Vol. 38, Issue 23
  • DOI: 10.1029/2011GL049915

A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data
journal, May 2012

  • Murakami, Motohiko; Ohishi, Yasuo; Hirao, Naohisa
  • Nature, Vol. 485, Issue 7396
  • DOI: 10.1038/nature11004

BurnMan: A lower mantle mineral physics toolkit
journal, April 2014

  • Cottaar, Sanne; Heister, Timo; Rose, Ian
  • Geochemistry, Geophysics, Geosystems, Vol. 15, Issue 4
  • DOI: 10.1002/2013GC005122

Broad plumes rooted at the base of the Earth's mantle beneath major hotspots
journal, September 2015


Thermal pressure in the laser-heated diamond anvil cell
journal, July 1990


Anomalous compressibility of ferropericlase throughout the iron spin cross-over
journal, May 2009

  • Wentzcovitch, R. M.; Justo, J. F.; Wu, Z.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 21
  • DOI: 10.1073/pnas.0812150106

Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium
journal, September 2008


A comparison of tomographic and geodynamic mantle models: COMPARISON OF MANTLE MODELS
journal, January 2002

  • Becker, Thorsten W.; Boschi, Lapo
  • Geochemistry, Geophysics, Geosystems, Vol. 3, Issue 1
  • DOI: 10.1029/2001GC000168

Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth's mantle
journal, October 2000


Thermodynamic parameters in the Earth as determined from seismic profiles
journal, September 1981


Perovskite as a possible sink for ferric iron in the lower mantle
journal, June 1997

  • McCammon, Catherine
  • Nature, Vol. 387, Issue 6634
  • DOI: 10.1038/42685

Preliminary reference Earth model
journal, June 1981


Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa
journal, October 2009

  • Marquardt, Hauke; Speziale, Sergio; Reichmann, Hans J.
  • Earth and Planetary Science Letters, Vol. 287, Issue 3-4
  • DOI: 10.1016/j.epsl.2009.08.017

Thermodynamics of mantle minerals - II. Phase equilibria
journal, March 2011


The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity: CARBON/CARBONATE fo2 BUFFER AT HP
journal, October 2011

  • Stagno, V.; Tange, Y.; Miyajima, N.
  • Geophysical Research Letters, Vol. 38, Issue 19
  • DOI: 10.1029/2011GL049560

Effect of Fe on the equation of state of mantle silicate perovskite over 1Mbar
journal, May 2008

  • Lundin, S.; Catalli, K.; Santillán, J.
  • Physics of the Earth and Planetary Interiors, Vol. 168, Issue 1-2
  • DOI: 10.1016/j.pepi.2008.05.002

Quantitative transmission X-ray microanalysis of ionic compounds
journal, April 1994


Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle
journal, January 2000

  • Lauterbach, S.; McCammon, C. A.; van Aken, P.
  • Contributions to Mineralogy and Petrology, Vol. 138, Issue 1
  • DOI: 10.1007/PL00007658

High Temperature Creep of Rock and Mantle Viscosity
journal, May 1975