skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice

Abstract

Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Several dozen CESA mutants have been reported since cellulose synthase (CESA) gene was first identified, but almost all mutants exhibit the defective phenotypes in plant growth and development. Here, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%–42%. Our study has for the first time reported a direct modification for the low-DP cellulose production that has broadmore » applications in biomass industries.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [2];  [1]
  1. Huazhong Agricultural Univ. Wuhan (China)
  2. Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1376598
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Plant Biotechnology Journal
Additional Journal Information:
Journal Volume: 15; Journal Issue: 9; Journal ID: ISSN 1467-7644
Publisher:
Society for Experimental Biology; Association of Applied Biology
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; biomass saccharification; cellulose; CESA; lodging resistance; rice

Citation Formats

Li, Fengcheng, Xie, Guosheng, Huang, Jiangfeng, Zhang, Ran, Li, Yu, Zhang, Miaomiao, Wang, Yanting, Li, Ao, Li, Xukai, Xia, Tao, Qu, Chengcheng, Hu, Fan, Ragauskas, Arthur J., and Peng, Liangcai. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. United States: N. p., 2017. Web. doi:10.1111/pbi.12700.
Li, Fengcheng, Xie, Guosheng, Huang, Jiangfeng, Zhang, Ran, Li, Yu, Zhang, Miaomiao, Wang, Yanting, Li, Ao, Li, Xukai, Xia, Tao, Qu, Chengcheng, Hu, Fan, Ragauskas, Arthur J., & Peng, Liangcai. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. United States. doi:10.1111/pbi.12700.
Li, Fengcheng, Xie, Guosheng, Huang, Jiangfeng, Zhang, Ran, Li, Yu, Zhang, Miaomiao, Wang, Yanting, Li, Ao, Li, Xukai, Xia, Tao, Qu, Chengcheng, Hu, Fan, Ragauskas, Arthur J., and Peng, Liangcai. Wed . "OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice". United States. doi:10.1111/pbi.12700. https://www.osti.gov/servlets/purl/1376598.
@article{osti_1376598,
title = {OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice},
author = {Li, Fengcheng and Xie, Guosheng and Huang, Jiangfeng and Zhang, Ran and Li, Yu and Zhang, Miaomiao and Wang, Yanting and Li, Ao and Li, Xukai and Xia, Tao and Qu, Chengcheng and Hu, Fan and Ragauskas, Arthur J. and Peng, Liangcai},
abstractNote = {Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Several dozen CESA mutants have been reported since cellulose synthase (CESA) gene was first identified, but almost all mutants exhibit the defective phenotypes in plant growth and development. Here, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%–42%. Our study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.},
doi = {10.1111/pbi.12700},
journal = {Plant Biotechnology Journal},
number = 9,
volume = 15,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • Lignocellulose materials were pretreated by methods known to improve enzymatic saccharification, and the percentage crystallinity (x-ray diffraction) and degree of polymerization were measured. It was observed that although the percentage crystallinity of cellulose was not altered by alkaline explosion (AE), carbon dioxide explosion (CE), ozone, and sodium chlorite treatment, very great increases were obtained in the extent of enzymatic saccharification. All the pretreatments studied except sodium chlorite caused significant reduction in degree of polymerization. It appears likely that the rate and extent of saccharification is governed by particle size, surface area, and degree of polymerization, since crystallinity effects alone domore » not explain the observed trends in the hydrolysis data. 17 references.« less
  • A comparative study on the saccharification of pretreated rice straw was brought about by using cellulase enzyme produced by Aspergillus terreus ATCC 52430 and its mutant strain UNGI-40. The effect of enzyme and substrate concentrations on the saccharification rate at 24 and 48 were studied. A syrup with 7% sugar concentration was obtained with a 10% substrate concentration for the mutant case, whereas a syrup with 6.8% sugar concentration was obtained with 3.5 times concentrated enzyme from the wild strain. A high saccharification value was obtained with low substrate concentration; the higher the substrate concentration used, the lower the percentmore » saccharification. The glucose content in the hydrolysate comprised 80-82% of total reducing sugars; the remainder was cellobiose and xylose together. The hydrolysate supported the growth of yeasts Candida utilis and Saccharomyces cerevisiae ATCC 52431. A biomass with a 48% protein content was obtained. The essential amino acid composition of yeast biomass was determined.« less
  • The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less