skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

Abstract

In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only $$(\alpha ,\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [3]; ORCiD logo [4]; ORCiD logo [5]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Physics Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy
  3. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Physics Division. Joint Inst. for Computational Sciences; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences. Physics Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21); National Aeronautic and Space Administration (NASA); National Science Foundation (NSF)
OSTI Identifier:
1376490
Grant/Contract Number:
AC05-00OR22725; AC02-05CH11231; NNH11AQ72I; PHY-1516197; TG-MCA08X010
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 843; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; numerical methods; nuclear reactions; nucleosynthesis; abundances; stars; supernovae

Citation Formats

Harris, J. Austin, Hix, W. Raphael, Chertkow, Merek A., Lee, C. T., Lentz, Eric J., and Messer, O. E. Bronson. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles. United States: N. p., 2017. Web. doi:10.3847/1538-4357/aa76de.
Harris, J. Austin, Hix, W. Raphael, Chertkow, Merek A., Lee, C. T., Lentz, Eric J., & Messer, O. E. Bronson. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles. United States. doi:10.3847/1538-4357/aa76de.
Harris, J. Austin, Hix, W. Raphael, Chertkow, Merek A., Lee, C. T., Lentz, Eric J., and Messer, O. E. Bronson. Mon . "Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles". United States. doi:10.3847/1538-4357/aa76de.
@article{osti_1376490,
title = {Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles},
author = {Harris, J. Austin and Hix, W. Raphael and Chertkow, Merek A. and Lee, C. T. and Lentz, Eric J. and Messer, O. E. Bronson},
abstractNote = {In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only $(\alpha ,\gamma )$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 ${M}_{\odot }$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.},
doi = {10.3847/1538-4357/aa76de},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 843,
place = {United States},
year = {Mon Jun 26 00:00:00 EDT 2017},
month = {Mon Jun 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 26, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 6works
Citation information provided by
Web of Science

Save / Share:
  • We investigate explosive nucleosynthesis in a delayed neutrino-driven, supernova explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of a 15 M{sub c}entre dot star. We take into accounts neutrino heating and cooling as well as change in electron fraction due to weak interactions appropriately, in the two-dimensional simulations. We assume the isotropic emission of neutrinos from the neutrino spheres with given luminosities. and the Fermi-Dirac distribution of given temperatures. We find that the stalled shock revives due to the neutrino heating aided by SASI for cases with L{sub n}u{sub e}>=3.9x10{sup 52}ergss{sup -1}more » and the as-pherical shock passes through the outer layers of the star (>=10,000 km), with the explosion energies of approx10{sup 51}ergs.Next we examine abundances and masses of the supernova ejecta. We find that masses of the ejecta and {sup 56}Ni correlate with the neutrino luminosity, and {sup 56}Ni mass is comparable to that observed in SN 1987A. We also find that abundance pattern of the supernova ejecta is similar to that of the solar system, for cases with high explosion energies of >10{sup 51}ergs. We emphasize that {sup 64}Zn, which is underproduced in the spherical case, is abundantly produced in slightly neutron-rich ejecta.« less
  • We explore heavy-element nucleosynthesis in the explosion of massive stars that are triggered by a quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. The present study is based on general-relativistic radiation hydrodynamics simulations with three-flavor Boltzmann neutrino transport in spherical symmetry, which utilize a quark-hadron hybrid equation of state based on the MIT bag model for strange quark matter. The quark-hadron phase transition inside the stellar core forms a shock wave propagating toward the surface of the proto-neutron star. This shock wave results in an explosion and ejects neutron-rich matter from the outer accreted layers of themore » proto-neutron star. Later, during the cooling phase, the proto-neutron star develops a proton-rich neutrino-driven wind. We present a detailed analysis of the nucleosynthesis outcome in both neutron-rich and proton-rich ejecta and compare our integrated nucleosynthesis with observations of the solar system and metal-poor stars. For our standard scenario, we find that a 'weak' r-process occurs and elements up to the second peak (A {approx} 130) are successfully synthesized. Furthermore, uncertainties in the explosion dynamics could barely allow us to obtain the strong r-process which produces heavier isotopes, including the third peak (A {approx} 195) and actinide elements.« less
  • The problem of nucleosynthesis was studied within an aspherical supernova model. The explosive burning was computed in a star of 25 M {sub ☉} initial mass on its final stage of evolution. The chemical composition of a presupernova was taken from realistic evolutionary computations. A piecewise parabolic method on a local stencil was applied to simulate the hydrodynamics of the explosion. The gravity was recomputed by a Poisson solver on a fine grid as the explosion developed. A detailed yield of chemical elements was performed as a post-processing step using the tracer particles method. The produced nuclei formed a layer-likemore » structure enclosing large fragments of nickel and iron-group isotopes that were pushed away from the central region by an explosion along the polar direction. The light nuclei were preferentially moving along the equatorial plane forming a torus-like structure.« less
  • We explore explosions of massive stars, which are triggered via the quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. We construct a quark equation of state, based on the bag model for strange quark matter. The transition between the hadronic and the quark phases is constructed applying Gibbs conditions. The resulting quark-hadron hybrid equations of state are used in core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport in spherical symmetry. The formation of a mixed phase reduces the adiabatic index, which induces the gravitational collapse of the central protoneutron star (PNS).more » The collapse halts in the pure quark phase, where the adiabatic index increases. A strong accretion shock forms, which propagates toward the PNS surface. Due to the density decrease of several orders of magnitude, the accretion shock turns into a dynamic shock with matter outflow. This moment defines the onset of the explosion in supernova models that allow for a quark-hadron phase transition, where otherwise no explosions could be obtained. The shock propagation across the neutrinospheres releases a burst of neutrinos. This serves as a strong observable identification for the structural reconfiguration of the stellar core. The ejected matter expands on a short timescale and remains neutron-rich. These conditions might be suitable for the production of heavy elements via the r-process. The neutron-rich material is followed by proton-rich neutrino-driven ejecta in the later cooling phase of the PNS where the {nu}p-process might occur.« less