skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron vibrational spectroscopic studies of novel tire-derived carbon materials

Abstract

Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this paper, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C–H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption–desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH 2 and –CH 3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced –SO 3H functional group helped in producing terminal H at the edge of the sp 2 bonded graphite-like layers. Finally, this study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop andmore » improve advanced energy storage materials.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [4];  [5]; ORCiD logo [6];  [7]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). The Bredesen Center for Interdisciplinary Research and Graduate Education
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Division
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  4. RJ Lee Group, Inc., Monroeville, PA (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
  7. Univ. of Tennessee, Knoxville, TN (United States). The Bredesen Center for Interdisciplinary Research and Graduate Education; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Org.:
Univ. of Tennessee, Knoxville, TN (United States); RJ Lee Group, Inc., Monroeville, PA (United States)
OSTI Identifier:
1376440
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 19; Journal Issue: 33; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Li, Yunchao, Cheng, Yongqiang, Daemen, Luke L., Veith, Gabriel M., Levine, Alan M., Lee, Richard J., Mahurin, Shannon M., Dai, Sheng, Naskar, Amit K., and Paranthaman, Mariappan Parans. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials. United States: N. p., 2017. Web. doi:10.1039/C7CP03750C.
Li, Yunchao, Cheng, Yongqiang, Daemen, Luke L., Veith, Gabriel M., Levine, Alan M., Lee, Richard J., Mahurin, Shannon M., Dai, Sheng, Naskar, Amit K., & Paranthaman, Mariappan Parans. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials. United States. doi:10.1039/C7CP03750C.
Li, Yunchao, Cheng, Yongqiang, Daemen, Luke L., Veith, Gabriel M., Levine, Alan M., Lee, Richard J., Mahurin, Shannon M., Dai, Sheng, Naskar, Amit K., and Paranthaman, Mariappan Parans. Fri . "Neutron vibrational spectroscopic studies of novel tire-derived carbon materials". United States. doi:10.1039/C7CP03750C.
@article{osti_1376440,
title = {Neutron vibrational spectroscopic studies of novel tire-derived carbon materials},
author = {Li, Yunchao and Cheng, Yongqiang and Daemen, Luke L. and Veith, Gabriel M. and Levine, Alan M. and Lee, Richard J. and Mahurin, Shannon M. and Dai, Sheng and Naskar, Amit K. and Paranthaman, Mariappan Parans},
abstractNote = {Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this paper, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C–H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption–desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH2 and –CH3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced –SO3H functional group helped in producing terminal H at the edge of the sp2 bonded graphite-like layers. Finally, this study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.},
doi = {10.1039/C7CP03750C},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 33,
volume = 19,
place = {United States},
year = {Fri Aug 11 00:00:00 EDT 2017},
month = {Fri Aug 11 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 11, 2018
Publisher's Version of Record

Save / Share:
  • Many inexpensive biofuel feedstocks, including those containing free fatty acids (FFAs) in high concentrations, are typically disposed of as waste due to our inability to efficiently convert them into usable biofuels. Here we demonstrate that carbon derived from waste tires could be functionalized with sulfonic acid (-SO 3H) to effectively catalyze the esterification of oleic acid or a mixture of fatty acids to usable biofuels. Waste tires were converted to hard carbon, then functionalized with catalytically active -SO 3H groups on the surface through an environmentally benign process that involved the sequential treatment with L-cysteine, dithiothreitol, and H 2O 2.more » In conclusion, when benchmarked against the same waste-tire derived carbon material treated with concentrated sulfuric acid at 150 °C, similar catalytic activity was observed. Both catalysts could also effectively convert oleic acid or a mixture of fatty acids and soybean oil to usable biofuels at 65 °C and 1 atm without leaching of the catalytic sites.« less
  • Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2 g-1) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g-1 at 1 mV s-1 with excellent capacitance retention of up to 98 % after 10 000 charge/discharge cycles. The high capacitancemore » and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π–π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life—a key challenge for redox active polymers.« less
  • Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2 g-1) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g-1 at 1 mV s-1 with excellent capacitance retention of up to 98 % after 10 000 charge/discharge cycles. The high capacitancemore » and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π–π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life—a key challenge for redox active polymers.« less
  • Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m 2/g –1) is synthesized using waste tires as the precursor and used as supercapacitor electrode. The narrow pore size distribution (PSD) and high surface area led to a good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI/TC). The composite film was highly flexible, conductive and exhibited a capacitance of 480 F/g –1 at 1 mV/s –1 with excellent capacitance retention up to 98% after 10,000 charge/discharge cycles. The high capacitance andmore » long cycle life were ascribed to the short diffusional paths, uniform PANI coating and tight confinement of the PANI in the inner pores of the tire-derived carbon via - interactions, which minimized the degradation of the PANI upon cycling. Here, we anticipate that the same strategy can be applied to deposit other pseudocapacitive materials with low-cost TC to achieve even higher electrochemical performance and longer cycle life, a key challenge for redox active polymers.« less