skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

Abstract

Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signs of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [2];  [1];  [1]; ORCiD logo [3]
  1. Univ. of Oxford, Oxford (United Kingdom)
  2. Univ. of Wisconsin, Madison, WI (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1376391
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 136; Journal Issue: C; Journal ID: ISSN 1359-6454
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; FeCrAl; Dislocation loops; Radiation damage; In-situ; Accident tolerant

Citation Formats

Haley, Jack C., Briggs, Samuel A., Edmondson, Philip D., Sridharan, Kumar, Roberts, Steve G., Lozano-Perez, Sergio, and Field, Kevin G.. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys. United States: N. p., 2017. Web. doi:10.1016/j.actamat.2017.07.011.
Haley, Jack C., Briggs, Samuel A., Edmondson, Philip D., Sridharan, Kumar, Roberts, Steve G., Lozano-Perez, Sergio, & Field, Kevin G.. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys. United States. doi:10.1016/j.actamat.2017.07.011.
Haley, Jack C., Briggs, Samuel A., Edmondson, Philip D., Sridharan, Kumar, Roberts, Steve G., Lozano-Perez, Sergio, and Field, Kevin G.. Thu . "Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys". United States. doi:10.1016/j.actamat.2017.07.011.
@article{osti_1376391,
title = {Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys},
author = {Haley, Jack C. and Briggs, Samuel A. and Edmondson, Philip D. and Sridharan, Kumar and Roberts, Steve G. and Lozano-Perez, Sergio and Field, Kevin G.},
abstractNote = {Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signs of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.},
doi = {10.1016/j.actamat.2017.07.011},
journal = {Acta Materialia},
number = C,
volume = 136,
place = {United States},
year = {Thu Jul 06 00:00:00 EDT 2017},
month = {Thu Jul 06 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 6, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and alunimum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3–0.8 displacements per atom (dpa) at temperatures of 335–355°C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a/2< 111 > or a< 100 > Burgers vectors. Weak composition dependencies were observedmore » and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Here, the results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.« less
  • We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less
  • FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less