skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development and operation of a Pr 2 Fe 14 B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

Abstract

Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE 2Fe 14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr 2Fe 14B instead of Nd 2Fe 14B, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr 2Fe 14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. In conclusion, the commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1] more »;  [2];  [2];  [1] « less
  1. Synchrotron SOLEIL, Gif-sur-Yvette (France)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1376119
Report Number(s):
BNL-114006-2017-JA
Journal ID: ISSN 2469-9888; PRABCJ; TRN: US1702678
Grant/Contract Number:
SC00112704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Accelerators and Beams
Additional Journal Information:
Journal Volume: 20; Journal Issue: 3; Journal ID: ISSN 2469-9888
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 43 PARTICLE ACCELERATORS

Citation Formats

Benabderrahmane, C., Valleau, M., Ghaith, A., Berteaud, P., Chapuis, L., Marteau, F., Briquez, F., Marcouille, O., Marlats, J. -L., Tavakoli, K., Mary, A., Zerbib, D., Lestrade, A., Louvet, M., Brunelle, P., Medjoubi, K., Herbeaux, C., Bechu, N., Rommeluere, P., Somogyi, A., Chubar, O., Kitegi, C., and Couprie, M. -E. Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line. United States: N. p., 2017. Web. doi:10.1103/PhysRevAccelBeams.20.033201.
Benabderrahmane, C., Valleau, M., Ghaith, A., Berteaud, P., Chapuis, L., Marteau, F., Briquez, F., Marcouille, O., Marlats, J. -L., Tavakoli, K., Mary, A., Zerbib, D., Lestrade, A., Louvet, M., Brunelle, P., Medjoubi, K., Herbeaux, C., Bechu, N., Rommeluere, P., Somogyi, A., Chubar, O., Kitegi, C., & Couprie, M. -E. Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line. United States. doi:10.1103/PhysRevAccelBeams.20.033201.
Benabderrahmane, C., Valleau, M., Ghaith, A., Berteaud, P., Chapuis, L., Marteau, F., Briquez, F., Marcouille, O., Marlats, J. -L., Tavakoli, K., Mary, A., Zerbib, D., Lestrade, A., Louvet, M., Brunelle, P., Medjoubi, K., Herbeaux, C., Bechu, N., Rommeluere, P., Somogyi, A., Chubar, O., Kitegi, C., and Couprie, M. -E. Thu . "Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line". United States. doi:10.1103/PhysRevAccelBeams.20.033201. https://www.osti.gov/servlets/purl/1376119.
@article{osti_1376119,
title = {Development and operation of a Pr2Fe14B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line},
author = {Benabderrahmane, C. and Valleau, M. and Ghaith, A. and Berteaud, P. and Chapuis, L. and Marteau, F. and Briquez, F. and Marcouille, O. and Marlats, J. -L. and Tavakoli, K. and Mary, A. and Zerbib, D. and Lestrade, A. and Louvet, M. and Brunelle, P. and Medjoubi, K. and Herbeaux, C. and Bechu, N. and Rommeluere, P. and Somogyi, A. and Chubar, O. and Kitegi, C. and Couprie, M. -E.},
abstractNote = {Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2Fe14B instead of Nd2Fe14B, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr2Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. In conclusion, the commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.},
doi = {10.1103/PhysRevAccelBeams.20.033201},
journal = {Physical Review Accelerators and Beams},
number = 3,
volume = 20,
place = {United States},
year = {Thu Mar 02 00:00:00 EST 2017},
month = {Thu Mar 02 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4works
Citation information provided by
Web of Science

Save / Share:
  • We report comprehensive 77 Se NMR measurements on a single crystalline sample of the recently discovered FeSe-based high-temperature superconductor K x Fe 2 - y Se 2 ( T c = 33 K) in a broad temperature range up to 290 K. Despite deviations from the stoichiometric KFe 2 Se 2 composition, we observed 77 Se NMR line shapes as narrow as 4.5 kHz under a magnetic field applied along the crystal c axis, and found no evidence for co-existence of magnetic order with superconductivity. On the other hand, the 77 Se NMR line shape splits into two peaks withmore » equal intensities at all temperatures when we apply the magnetic field along the ab plane. This suggests that K vacancies may have a superstructure and that the local symmetry of the Se sites is lower than the tetragonal fourfold symmetry of the average structure. This effect might be a prerequisite for stabilizing the s ± symmetry of superconductivity in the absence of the hole bands at the Brillouin zone center. From the increase of NMR linewidth below T c induced by the Abrikosov lattice of superconducting vortices, we estimate the in-plane penetration depth λ ab ~ 290 nm and the carrier concentration n e ~ 1 × 10 + 21 cm - 3 . Our Knight shift 77 K data indicate that the uniform spin susceptibility decreases progressively with temperature, in analogy with the case of FeSe ( T c ~ 9 K) as well as other FeAs high- T c systems. The strong suppression of 77 K observed immediately below T c for all crystal orientations is consistent with a singlet pairing of Cooper pairs. We do not however observe the Hebel-Slichter coherence peak of the nuclear spin-lattice relaxation rate 1 / T 1 immediately below T c , expected for conventional BCS s-wave superconductors. In contrast with the case of FeSe, we do not observe evidence for an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1 / T 1 T . Instead, 1 / T 1 T exhibits qualitatively the same behavior as overdoped non-superconducting Ba(Fe 1 - x Co x ) 2 As 2 with x ~ 0 . 14 or greater, where hole bands are missing in the Brillouin zone center. We will discuss the implications of our results on the unknown mechanism of high-temperature superconductivity in FeSe and FeAs systems.« less
  • Cited by 67
  • The Ho2Ti2O7, Er2Ti2O7 and Yb2Ti2O7 pyrochlores were studied by synchrotron X-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group Fd-3m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from Fd-3m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and non-stoichiometric powders and a crushed floating zone crystal of Ho2Ti2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30,000 of the strongest X-ray diffraction peak. This indicates to high sensitivity that the structural space group ofmore » these rare earth titanate pyrochlores is Fd-3m, and that thus the (002) peak observed in the neutron scattering experiments has a non-structural origin. The cell parameters and internal strain for lightly stuffed Ho2+xTi2-xO7 are also presented.« less