skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chloroplast genomes: diversity, evolution, and applications in genetic engineering

Abstract

Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.

Authors:
 [1];  [2];  [1];  [2]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States)
  2. Academia Sinica, Taipei (Taiwan)
Publication Date:
Research Org.:
Univ. of Pennsylvania, Philadelphia, PA (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1375954
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Genome Biology (Online)
Additional Journal Information:
Journal Name: Genome Biology (Online); Journal Volume: 17; Journal Issue: 1; Journal ID: ISSN 1474-760X
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES

Citation Formats

Daniell, Henry, Lin, Choun -Sea, Yu, Ming, and Chang, Wan -Jung. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. United States: N. p., 2016. Web. doi:10.1186/s13059-016-1004-2.
Daniell, Henry, Lin, Choun -Sea, Yu, Ming, & Chang, Wan -Jung. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. United States. doi:10.1186/s13059-016-1004-2.
Daniell, Henry, Lin, Choun -Sea, Yu, Ming, and Chang, Wan -Jung. 2016. "Chloroplast genomes: diversity, evolution, and applications in genetic engineering". United States. doi:10.1186/s13059-016-1004-2. https://www.osti.gov/servlets/purl/1375954.
@article{osti_1375954,
title = {Chloroplast genomes: diversity, evolution, and applications in genetic engineering},
author = {Daniell, Henry and Lin, Choun -Sea and Yu, Ming and Chang, Wan -Jung},
abstractNote = {Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.},
doi = {10.1186/s13059-016-1004-2},
journal = {Genome Biology (Online)},
number = 1,
volume = 17,
place = {United States},
year = 2016,
month = 6
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • For at least a decade, annually recurring blooms of the photosynthetic ciliate, Myrionecta rubra have been observed in the Columbia River estuary in late summer. In an effort to understand the dynamics of these blooms, we investigated the genetic variability of M. rubra and its cryptophyte plastids within three large estuarine blooms formed in consecutive years (2007-2009), and conducted a broader spatial survey along the coasts of Oregon/Washington. Analysis of the ‘18S-28S’ sequences specific for Mesodiniidae uncovered at least 7 variants of M. rubra within the Columbia River coastal margin in spring and summer, but only one of these M.more » rubra variants was implicated in estuary bloom formation. Using a multigene approach, we show that the bloom-forming variant of M. rubra appears to harbor the same cryptophyte chloroplast in recurring blooms. Analyses of chloroplast 16S rRNA, cryptophyte RuBisCO and Photosystem II D2 genes together suggest that the plastid is derived from Teleaulax amphioxeia. Free-living cells of this species and of other cryptophytes were practically absent from the bloom patches in the estuary main channels based on 18S rDNA sequence analyses. The respectively low and high proportions of T. amphioxeia nuclei and chloroplasts signals found in the M. rubra bloom of the Columbia River estuary in successive years supports the notion of a transient association between T. amphioxeia and the bloom-forming M. rubra variant, with loss of cryptophyte nuclei. The genetic variability of M. rubra uncovered here is relevant to the controversy in the literature regarding the cryptophyte /M. rubra association.« less
  • The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less
    Cited by 5
  • Cited by 5
  • The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less