skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of 241Am in WGPu for chronometry applications

 [1];  [1]; ORCiD logo [1];  [1];  [2]
  1. Los Alamos National Laboratory
  2. The University of Texas at Austin
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 254th ACS National Meeting & Exposition ; 2017-08-20 - 2017-08-24 ; Washington, District Of Columbia, United States
Country of Publication:
United States

Citation Formats

Yoho, Michael Duncan, Porterfield, Donivan R., Rim, Jung Ho, Klundt, Dylan James, and Landsberger, Sheldon. Determination of 241Am in WGPu for chronometry applications. United States: N. p., 2017. Web.
Yoho, Michael Duncan, Porterfield, Donivan R., Rim, Jung Ho, Klundt, Dylan James, & Landsberger, Sheldon. Determination of 241Am in WGPu for chronometry applications. United States.
Yoho, Michael Duncan, Porterfield, Donivan R., Rim, Jung Ho, Klundt, Dylan James, and Landsberger, Sheldon. 2017. "Determination of 241Am in WGPu for chronometry applications". United States. doi:.
title = {Determination of 241Am in WGPu for chronometry applications},
author = {Yoho, Michael Duncan and Porterfield, Donivan R. and Rim, Jung Ho and Klundt, Dylan James and Landsberger, Sheldon},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 8

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • No abstract prepared.
  • The treatment of spent fuel produced in nuclear power generation is one of the most important issues to both the nuclear community and the general public. One of the viable options to long-term geological disposal of spent fuel is to extract plutonium, minor actinides (MA), and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in currently operating light-water reactors (LWR), thus reducing the radiological toxicity of the nuclear waste stream. One of the challenges is to demonstrate that the burnup-dependent characteristic differences between Reactor-Grade Mixed Oxide (RG-MOX) fuel and RG-MOX fuel withmore » MA Np-237 and Am 241 are minimal, particularly, the inert gas generation rate, such that the commercial MOX fuel experience base is applicable. Under the Advanced Fuel Cycle Initiative (AFCI), developmental fuel specimens in experimental assembly LWR-2 are being tested in the northwest (NW) I-24 irradiation position of the Advanced Test Reactor (ATR). The experiment uses MOX fuel test hardware, and contains capsules with MOX fuel consisting of mixed oxide manufactured fuel using reactor grade plutonium (RG-Pu) and mixed oxide manufactured fuel using RG-Pu with added Np/Am. This study will compare the fuel neutronics depletion characteristics of Case-1 RG-MOX and Case-2 RG-MOX with Np/Am.« less
  • We report on a set of neutron-induced reaction measurements on {sup 241}Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering CEnter (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of {approx} 300 keV where background limits the measurement. Using mono-energetic neutrons produced in the {sup 2}H(d,n){sup 3}He reaction at Triangle University Nuclear Laboratory (TUNL), we have measured the {sup 241}Am(n,2n) excitation function from threshold (6.7 MeV) to 14.5 MeVmore » using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates.« less
  • Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of {sup 241}Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased ({alpha},n) production in oxide fuels from the {sup 241}Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of {sup 241}Am-bearing MOX fuel in the fast reactor system and the effect onmore » neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of {sup 241}Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of {sup 241}Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.« less
  • The objective of this project is to improve the accuracy of the {sup 242}Cm/{sup 241}Am radiochemistry ratio. We have performed an activation experiment to measure the {sup 241}Am(n,{gamma}) cross section leading to either the ground state of {sup 242g}Am (t{sub 1/2} = 16 hr) which decays to {sup 242}Cm (t{sub 1/2} = 163 d) or the long-lived isomer {sup 242m}Am (t{sub 1/2} = 141 yr). This experiment will develop a new set of americium cross section evaluations that can be used with a measured {sup 242}Cm/{sup 241}Am radiochemical measurement for nuclear forensic purposes. This measurement is necessary to interpret themore » {sup 242}Cm/{sup 241}Am ratio because a good measurement of this neutron capture isomer ratio for {sup 241}Am does not exist. The targets were prepared in 2007 from {sup 241}Am purified from LANL stocks. Gold was added to the purified {sup 241}Am as an internal neutron fluence monitor. These targets were placed into a holder, packaged, and shipped to Forschungszentrum Karlsruhe, where they were irradiated at their Van de Graff facility in February 2008. One target was irradiated with {approx}25 keV quasimonoenergetic neutrons produced by the {sup 7}Li(p,n) reaction for 3 days and a second target was also irradiated for 3 days with {approx}500 keV neutrons. Because it will be necessary to separate the {sup 242}Cm from the {sup 241}Am in order to measure the amount of {sup 242}Cm by alpha spectrometry, research into methods for americium/curium separations were conducted concurrently. We found that anion exchange chromatography in methanol/nitric acid solutions produced good separations that could be completed in one day resulting in a sample with no residue. The samples were returned from Germany in July 2009 and were counted by gamma spectrometry. Chemical separations have commenced on the blank sample. Each sample will be spiked with {sup 244}Cm, dissolved and digested in nitric acid solutions. One third of each sample will be processed at a time. First, the gold will be removed by anion exchange chromatography. Then the {sup 242}Cm will be separated from the {sup 241}Am using the methanol/nitric acid anion exchange method. When a sufficient separation has been achieved, a deposit will be prepared and the {sup 242}Cm will be counted by alpha spectrometry. The purified {sup 241}Am fraction containing the long lived {sup 242m}Am will be allowed to decay into {sup 242}Cm for a period of {approx}6 months. After this time, the americium/curium separations will be repeated and the {sup 242}Cm that has grown in will be counted by alpha spectrometry. At the conclusion of the experiment, we will have cross section measurements for {sup 241}Am (n,{gamma}) {sup 242g}Am and {sup 241}Am (n,V) {sup 242m}Am at two energies.« less