skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 4th Penn State Bioinorganic Workshop

Abstract

The research area of biological inorganic chemistry encompasses a wide variety of subfields, including molecular biology, biochemistry, biophysics, inorganic chemistry, analytical chemistry, physical chemistry, and theoretical chemistry, as well as many different methods, such as biochemical characterization of enzymes, reaction kinetics, a plethora of spectroscopic techniques, and computational methods. The above methods are combined to understand the formation, function, and regulation of the many metallo-cofactors found in Nature as well as to identify novel metallo-cofactors. Many metalloenzyme-catalyzed reactions are extremely complex, but are of fundamental importance to science and society. Examples include (i) the reduction of the chemically inert molecule, dinitrogen, to ammonia by the enzyme nitrogenase (this reaction is fundamental for the production of nitrogen fertilizers); (ii) the oxidation of water to dioxygen by the Mn4Ca cluster found in photosystem II; and (iii) myriad reactions in which aliphatic, inert C-H bonds are cleaved for subsequent functionalization of the carbon atoms (the latter reactions are important in the biosynthesis of many natural products). Because of the broad range of areas and techniques employed in this field, research in bioinorganic chemistry is typically carried out collaboratively between two or more research groups. It is of paramount importance that researchers working inmore » this field have a good, basic, working knowledge of many methods and approaches employed in the field, in order to design and discuss experiments with collaborators. Therefore, the training of students working in bioinorganic chemistry is an important aspect of this field. Hugely successful “bioinorganic workshops” were offered in the 1990s at The University of Georgia. These workshops laid the foundation for many of the extant collaborative research efforts in this area today. The large and diverse group of bioinorganic chemists at The Pennsylvania State University and our unique laboratory space are well suited for the continuation of such training workshops. The co-principal investigators of this award lead these efforts. After a smaller “trial workshop” in 2010, the Penn State bioinorganic group, led by the co-PIs, offers these workshops biennially. The 2012, 2014, and 2016 workshops provided training to 123, 162, and 153 participants, respectively, by offering (i) a series of lectures given by faculty experts on the given topic, (ii) hands-on training in small groups by experts in the various methods, and (iii) sharing research results of the participants by oral and poster presentations. The centerpiece of the workshops is the hands-on training, in which approximately half of the participants from all ranks (undergraduate students to faculty) served as teachers. In this section, the traditional roles of teachers and students were sometimes reversed to the extent that undergraduate students taught faculty in the students' areas of specialty. We anticipate that these workshops will facilitate research in bioinorganic chemistry and will help establish future collaborations among “workshop alumni” to carry out cutting-edge research in bioinorganic chemistry that will address many important topics relevant to our society.« less

Authors:
 [1]
  1. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1375808
Report Number(s):
DOE-PSU-15658-F
DOE Contract Number:
SC0015658
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; interdisciplinary science; bioinorganic chemistry; metalloenzymes; spectroscopy; biofuels; training of students and postdoctoral fellows

Citation Formats

Krebs, Carsten. 4th Penn State Bioinorganic Workshop. United States: N. p., 2017. Web. doi:10.2172/1375808.
Krebs, Carsten. 4th Penn State Bioinorganic Workshop. United States. doi:10.2172/1375808.
Krebs, Carsten. Tue . "4th Penn State Bioinorganic Workshop". United States. doi:10.2172/1375808. https://www.osti.gov/servlets/purl/1375808.
@article{osti_1375808,
title = {4th Penn State Bioinorganic Workshop},
author = {Krebs, Carsten},
abstractNote = {The research area of biological inorganic chemistry encompasses a wide variety of subfields, including molecular biology, biochemistry, biophysics, inorganic chemistry, analytical chemistry, physical chemistry, and theoretical chemistry, as well as many different methods, such as biochemical characterization of enzymes, reaction kinetics, a plethora of spectroscopic techniques, and computational methods. The above methods are combined to understand the formation, function, and regulation of the many metallo-cofactors found in Nature as well as to identify novel metallo-cofactors. Many metalloenzyme-catalyzed reactions are extremely complex, but are of fundamental importance to science and society. Examples include (i) the reduction of the chemically inert molecule, dinitrogen, to ammonia by the enzyme nitrogenase (this reaction is fundamental for the production of nitrogen fertilizers); (ii) the oxidation of water to dioxygen by the Mn4Ca cluster found in photosystem II; and (iii) myriad reactions in which aliphatic, inert C-H bonds are cleaved for subsequent functionalization of the carbon atoms (the latter reactions are important in the biosynthesis of many natural products). Because of the broad range of areas and techniques employed in this field, research in bioinorganic chemistry is typically carried out collaboratively between two or more research groups. It is of paramount importance that researchers working in this field have a good, basic, working knowledge of many methods and approaches employed in the field, in order to design and discuss experiments with collaborators. Therefore, the training of students working in bioinorganic chemistry is an important aspect of this field. Hugely successful “bioinorganic workshops” were offered in the 1990s at The University of Georgia. These workshops laid the foundation for many of the extant collaborative research efforts in this area today. The large and diverse group of bioinorganic chemists at The Pennsylvania State University and our unique laboratory space are well suited for the continuation of such training workshops. The co-principal investigators of this award lead these efforts. After a smaller “trial workshop” in 2010, the Penn State bioinorganic group, led by the co-PIs, offers these workshops biennially. The 2012, 2014, and 2016 workshops provided training to 123, 162, and 153 participants, respectively, by offering (i) a series of lectures given by faculty experts on the given topic, (ii) hands-on training in small groups by experts in the various methods, and (iii) sharing research results of the participants by oral and poster presentations. The centerpiece of the workshops is the hands-on training, in which approximately half of the participants from all ranks (undergraduate students to faculty) served as teachers. In this section, the traditional roles of teachers and students were sometimes reversed to the extent that undergraduate students taught faculty in the students' areas of specialty. We anticipate that these workshops will facilitate research in bioinorganic chemistry and will help establish future collaborations among “workshop alumni” to carry out cutting-edge research in bioinorganic chemistry that will address many important topics relevant to our society.},
doi = {10.2172/1375808},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Aug 22 00:00:00 EDT 2017},
month = {Tue Aug 22 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: