skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 2017 NREL Photovoltaic Reliability Workshop

Abstract

NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.

Authors:
 [1]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1375689
Report Number(s):
NREL/PR-5J00-68942
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at the 2017 Photovoltaic Reliability Workshop (PVRW), 28 February - 2 March 2017, Lakewood, Colorado
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 29 ENERGY PLANNING, POLICY, AND ECONOMY; PVRW; reliability; solar; PV; photovoltaics; Photovoltaic Reliability Workshop

Citation Formats

Kurtz, Sarah. 2017 NREL Photovoltaic Reliability Workshop. United States: N. p., 2017. Web.
Kurtz, Sarah. 2017 NREL Photovoltaic Reliability Workshop. United States.
Kurtz, Sarah. Tue . "2017 NREL Photovoltaic Reliability Workshop". United States. doi:. https://www.osti.gov/servlets/purl/1375689.
@article{osti_1375689,
title = {2017 NREL Photovoltaic Reliability Workshop},
author = {Kurtz, Sarah},
abstractNote = {NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Aug 15 00:00:00 EDT 2017},
month = {Tue Aug 15 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.
  • The goals of the photovoltaic module reliability testing program at NREL include working with PV manufacturers to improve the long-term reliability of their modules, as well as obtaining an understanding of the correlation between indoor (accelerated) testing and outdoor (natural) exposure in order to reasonably predict PV module service lifetime. In addition, when problems occur, it is important to perform accurate failure analysis techniques to determine failure mechanisms, and, hopefully, obtain realistic solutions. At NREL, we have developed both indoor and outdoor module reliability testing programs to investigate these various, complex issues. These programs involve module qualification testing, photostability studies,more » accelerated weathering, and outdoor, real-time exposure testing. An overview of these various ongoing programs, their goals, approaches, and methods, will be presented here.« less
  • NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.
  • This proceedings is the compilation of papers presented at the ninth PV Performance and Reliability Workshop held at the Sheraton Denver West Hotel on September 4--6, 1996. This years workshop included presentations from 25 speakers and had over 100 attendees. All of the presentations that were given are included in this proceedings. Topics of the papers included: defining service lifetime and developing models for PV module lifetime; examining and determining failure and degradation mechanisms in PV modules; combining IEEE/IEC/UL testing procedures; AC module performance and reliability testing; inverter reliability/qualification testing; standardization of utility interconnect requirements for PV systems; need activitiesmore » to separate variables by testing individual components of PV systems (e.g. cells, modules, batteries, inverters,charge controllers) for individual reliability and then test them in actual system configurations; more results reported from field experience on modules, inverters, batteries, and charge controllers from field deployed PV systems; and system certification and standardized testing for stand-alone and grid-tied systems.« less
  • This report compiles the presentations made at the 1999 Photovoltaic Performance and Reliability Workshop, held on October 18-21, 1999, in Vail, Colorado. The theme of the workshop was ''Setting a Standard for PV Performance and Reliability,'' with the focus on testing, test methods, evaluation, and standards. The workshop provided a venue for technical discussions on four topical areas: module rating, module qualification, power processing, and systems. Includes the following. (1) Module Performance Rating. IEEE PAR 1479 ''Draft Recommended Practice for the Evaluation of Photovoltaic Module Energy Production'' - proceed with validating the models and inputs; look closely at the needmore » to develop a similar activity for system energy rating. (2) Module Qualification Testing. IEEE Std.1262 ''Recommended Practice for Qualification of PV Modules'' - continue validation of proposed new qualification tests at NREL, ISPRA, and US PV industry and test lab facilities. Reliability testing should be done and should include module qualification. (3) Power Processing. The most pressing concerns expressed by individuals included system design and system components integration aspects; reliability assurance; interconnection and the need for a uniform, national approach; testing; and, infrastructure development. (4) Systems Evaluation. The most pressing concerns reiterated the concerns in the power processing session. IEEE PAR 1373 ''Draft Recommended Field Test Methods and Procedures for Grid-Connected Photovoltaic Systems.'' There was much discussion of the appropriate levels of recommended testing. IEEE PAR 1526 - ''Draft Recommended Practice for Testing the Performance of Stand-Alone Photovoltaic Systems'' - build on the completed initial testing validation at four US sites by conducting a validation of the revised practices, and aggressively pursue the previously initiated international testing validation involvement.« less