skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solid-State Lighting R&D Plan - 2016


The SSL R&D Plan provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings. The R&D Plan also reviews SSL technology status and trends for both LEDs and OLEDs and offers an overview of the current DOE SSL R&D project portfolio.

Publication Date:
Research Org.:
EERE Publication and Product Library
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) Lighting)
OSTI Identifier:
Report Number(s):
Resource Type:
Technical Report
Country of Publication:
United States
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; DOE; SSL; LED; OLED; R&D; plan; research; trends; project; roadmap; lighting

Citation Formats

None, None. Solid-State Lighting R&D Plan - 2016. United States: N. p., 2016. Web. doi:10.2172/1375684.
None, None. Solid-State Lighting R&D Plan - 2016. United States. doi:10.2172/1375684.
None, None. 2016. "Solid-State Lighting R&D Plan - 2016". United States. doi:10.2172/1375684.
title = {Solid-State Lighting R&D Plan - 2016},
author = {None, None},
abstractNote = {The SSL R&D Plan provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings. The R&D Plan also reviews SSL technology status and trends for both LEDs and OLEDs and offers an overview of the current DOE SSL R&D project portfolio.},
doi = {10.2172/1375684},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 6

Technical Report:

Save / Share:
  • President Obama's energy and environment agenda calls for deployment of 'the Cheapest, Cleanest, Fastest Energy Source - Energy Efficiency.' The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) plays a critical role in advancing the President's agenda by helping the United States advance toward an energy-efficient future. Lighting in the United States is projected to consume nearly 10 quads of primary energy by 2012.3 A nation-wide move toward solid-state lighting (SSL) for general illumination could save a total of 32.5 quads of primary energy between 2012 and 2027. No other lighting technology offers the DOE andmore » our nation so much potential to save energy and enhance the quality of our built environment. The DOE has set forth the following mission statement for the SSL R&D Portfolio: Guided by a Government-industry partnership, the mission is to create a new, U.S.-led market for high-efficiency, general illumination products through the advancement of semiconductor technologies, to save energy, reduce costs and enhance the quality of the lighted environment.« less
  • Provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings, reviewing SSL technology status and trends for both LEDs and OLEDs and offering an overview of the current DOE SSL R&D project portfolio.
  • The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but bymore » an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.« less
  • This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSLmore » GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.« less
  • superior lighting services to low income people in off-grid areas of developing countries, many of whom currently rely on fuel based lighting sources such as kerosene. If this potential is to be achieved in the near term, however, manufacturers must produce off-grid lighting products that are inexpensive, perform well, and meet the needs of potential end users. At present, relatively few products meet all three of these goals. In this article, we report results from a detailed study of lighting use by micro-enterprises in two small towns in Kenya's Rift Valley Province. The work included a survey about lighting usemore » by 50 small businesses, careful measurements of kerosene lighting use patterns and associated costs for 23 of these businesses, and a subsequent field trial in which 14 of the 23 businesses purchased and used low cost LED lamps over a number of months.« less