skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: U.S. Department of Energy Reference Model Program RM1: Experimental Results.

Abstract

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulentmore » characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.« less

Authors:
 [1];  [2];  [2];  [1];  [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1375388
Report Number(s):
SAND-2017-8534R
656129
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY

Citation Formats

Hill, Craig, Neary, Vincent Sinclair, Gunawan, Budi, Guala, Michele, and Sotiropoulos, Fotis. U.S. Department of Energy Reference Model Program RM1: Experimental Results.. United States: N. p., 2017. Web. doi:10.2172/1375388.
Hill, Craig, Neary, Vincent Sinclair, Gunawan, Budi, Guala, Michele, & Sotiropoulos, Fotis. U.S. Department of Energy Reference Model Program RM1: Experimental Results.. United States. doi:10.2172/1375388.
Hill, Craig, Neary, Vincent Sinclair, Gunawan, Budi, Guala, Michele, and Sotiropoulos, Fotis. 2017. "U.S. Department of Energy Reference Model Program RM1: Experimental Results.". United States. doi:10.2172/1375388. https://www.osti.gov/servlets/purl/1375388.
@article{osti_1375388,
title = {U.S. Department of Energy Reference Model Program RM1: Experimental Results.},
author = {Hill, Craig and Neary, Vincent Sinclair and Gunawan, Budi and Guala, Michele and Sotiropoulos, Fotis},
abstractNote = {The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.},
doi = {10.2172/1375388},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 8
}

Technical Report:

Save / Share:
  • The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN - SAFL) . Reference Model 2 (RM2) is a 1:15 geometric scale dual - rotor crossmore » flow vertical axis device with counter - rotating rotors, each with a rotor diameter d T = 0.43m and rotor height, h T = 0.323 m. RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi River near Baton Rouge, Louisiana (Barone et al. 2014) . Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor and the midpoint for RM2 . Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Q w = 2. 35m 3s -1 , resulting in a hub height velocity of approximately U hub = 1. 2 ms -1 and blade chord length Reynolds numbers of Re c = 6 .1x10 4. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing computational fluid dynamics (CFD) models and their ability to accurately simulate turbulent inflow environments, device performance metrics, and to reproduce wake velocity deficit, recovery and higher order turbulent statistics.« less
  • The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM2) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device withmore » counter-rotating rotors, each with a rotor diameter d T = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Q w = 2.425m3s -1, resulting in a hub height velocity of approximately U hub = 1.05ms -1 and blade chord length Reynolds numbers of R ec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.« less
  • Quenched nonisothermal pyrolysis studies have been conducted on a Tipton Member, Green River Formation oil shale from Wyoming and a Parachute Creek Member, Green River Formation oil shale from Colorado. These shales have been designated as western reference oil shales by the US Department of Energy. The conversion of kerogen to bitumen and volatiles (oil + gas) was obtained for heating rates of 2 and 10 K/min in the temperature range of 573 to 773 K using a modified thermogravimetric analyzer. Particular attention was paid to the formation of the intermediate bitumen during decomposition of the shale. The maximum amountmore » of extractable bitumen increases with temperature and heating rate. This observation is consistent with an oil shale decomposition model in which the activation energy for kerogen decomposition is greater than the activation energy of bitumen decomposition. This is also consistent with previous isothermal decomposition studies on the same oil shales. A nonlinear least-squares program was used to fit the quenched nonisothermal data to a simple model that incorporates bitumen formation, bitumen decomposition, and volatiles evolution. Although seemingly good fits were obtained the parameter statistics were poor and showed a high degree of linear dependency. 18 refs., 11 figs., 3 tabs.« less
  • Abstract not provided.
  • The Department of Energy (DOE) consumes 83 trillion BTU s per year at a cost of about $300 million. The energy is used to heat, ventilate, air-condition, light, and operate nearly 9,000 buildings within the DOE complex. The purpose of the audit was to determine if DOE had effective programs in place to ensure efficient in-house use of energy. In performing our audit we reviewed applicable laws, Federal regulations and DOE implementing policies, procedures and practices at DOE Headquarters, three field offices, and six sites directly responsible for energy use. The facilities at audited locations account for nearly one-third ofmore » the cost of DOE's in-house energy consumption. The audit was made during the period November 1991 through May 1992.« less