skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling gas centrifuge enrichment plants.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the 6220/6230 Summer Student Mini-Symposium held August 16, 2016 in Albuquerque, NM.
Country of Publication:
United States

Citation Formats

Carey, Riley, and Cipiti, Benjamin B. Modelling gas centrifuge enrichment plants.. United States: N. p., 2016. Web.
Carey, Riley, & Cipiti, Benjamin B. Modelling gas centrifuge enrichment plants.. United States.
Carey, Riley, and Cipiti, Benjamin B. 2016. "Modelling gas centrifuge enrichment plants.". United States. doi:.
title = {Modelling gas centrifuge enrichment plants.},
author = {Carey, Riley and Cipiti, Benjamin B.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated asmore » confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.« less
  • Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument,more » combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.« less
  • Uranium deposition studies were performed on a test loop system designed to simulate process gas flow through the header piping of a gas centrifuge enrichment plant. The objectives of these studies were to investigate the effectiveness of an in-line gaseous cleaning agent in removing uranium in pipe deposits and to analyze long-term deposition growth and isotopic exchange under simulated centrifuge plant operating conditions. The test loop studies are described, the results are reported, and the implications for analyzing actual plant data are discussed. Results indicate that (1) 93% of the uranium deposit is removed within 15 min when a pipemore » is pressurized with gaseous ClF/sub 3/, (2) the isotopic abundance of a highly enriched uranium deposit remains unchanged when UF/sub 6/ of a lower assay is introduced into the pipe, and (3) air inleakage will be the cause of the largest deposits in centrifuge plant process header pipes.« less
  • Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These andmore » related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.« less