skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling gas centrifuge enrichment plants.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the 6220/6230 Summer Student Mini-Symposium held August 16, 2016 in Albuquerque, NM.
Country of Publication:
United States

Citation Formats

Carey, Riley, and Cipiti, Benjamin B. Modelling gas centrifuge enrichment plants.. United States: N. p., 2016. Web.
Carey, Riley, & Cipiti, Benjamin B. Modelling gas centrifuge enrichment plants.. United States.
Carey, Riley, and Cipiti, Benjamin B. Mon . "Modelling gas centrifuge enrichment plants.". United States. doi:.
title = {Modelling gas centrifuge enrichment plants.},
author = {Carey, Riley and Cipiti, Benjamin B.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Aug 01 00:00:00 EDT 2016},
month = {Mon Aug 01 00:00:00 EDT 2016}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated asmore » confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.« less
  • Uranium deposition studies were performed on a test loop system designed to simulate process gas flow through the header piping of a gas centrifuge enrichment plant. The objectives of these studies were to investigate the effectiveness of an in-line gaseous cleaning agent in removing uranium in pipe deposits and to analyze long-term deposition growth and isotopic exchange under simulated centrifuge plant operating conditions. The test loop studies are described, the results are reported, and the implications for analyzing actual plant data are discussed. Results indicate that (1) 93% of the uranium deposit is removed within 15 min when a pipemore » is pressurized with gaseous ClF/sub 3/, (2) the isotopic abundance of a highly enriched uranium deposit remains unchanged when UF/sub 6/ of a lower assay is introduced into the pipe, and (3) air inleakage will be the cause of the largest deposits in centrifuge plant process header pipes.« less
  • Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These andmore » related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.« less
  • Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability. ''Mailbox'' declarations have been used in the last two decades to verify receipts, production, and shipments at some bulk-handling facilities (e.g., fuel-fabrication plants). The operator declares the status of his plant to the IAEA on a daily basis using a secure ''Mailbox'' system such as a secure tamper-resistant computer. The operator agrees to hold receipts and shipments for a specified period of time, along with a specified number of annual inspections, to enable inspectormore » access to a statistically large enough population of UF{sub 6} cylinders and fuel assemblies to achieve the desired detection probability. The inspectors can access the ''Mailbox'' during randomly timed inspections and then verify the operator's declarations for that day. Previously, this type of inspection regime was considered mainly for verifying the material balance at fuel-fabrication, enrichment, and conversion plants. Brookhaven National Laboratory has expanded the ''Mailbox'' concept with short-notice random inspections (SNRIs), coupled with enhanced video surveillance, to include declaration and verification of UF{sub 6} cylinder operational data to detect activities associated with undeclared LEU production at GCEPs. Since the ''Mailbox'' declarations would also include data relevant to material-balance verification, these randomized inspections would replace the scheduled monthly interim inspections for material-balance purposes; in addition, the inspectors could simultaneously perform the required number of Limited-Frequency Unannounced Access (LFUA) inspections used for HEU detection. This approach would provide improved detection capabilities for a wider range of diversion activities with not much more inspection effort than at present.« less