skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

Abstract

This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, inmore » 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.« less

Authors:
;
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1375212
Report Number(s):
INL/CON-17-40828
DOE Contract Number:  
DE-AC07-05ID14517
Resource Type:
Conference
Resource Relation:
Conference: 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies, San Francisco, CA, USA, June 11–15, 2017
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; corrosion; instrumentation; piping

Citation Formats

Gribok, Andrei V., and Agarwal, Vivek. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION. United States: N. p., 2017. Web.
Gribok, Andrei V., & Agarwal, Vivek. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION. United States.
Gribok, Andrei V., and Agarwal, Vivek. Thu . "FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION". United States. doi:. https://www.osti.gov/servlets/purl/1375212.
@article{osti_1375212,
title = {FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION},
author = {Gribok, Andrei V. and Agarwal, Vivek},
abstractNote = {This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: