skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Looking Inside a Tyrannosaur’s Skull

Abstract

Researchers using Los Alamos’ unique neutron-imaging and high-energy X-ray capabilities have exposed the inner structures of the fossil skull of a 74-million-year-old tyrannosauroid dinosaur nicknamed the Bisti Beast in the highest-resolution scan of tyrannosaur skull ever done.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
LANL (Los Alamos National Laboratory (LANL), Los Alamos, NM (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1375211
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; FOSSIL; BISTI BEAST; TYRANNOSAURUS REX; SKULL

Citation Formats

Vogel, Sven, Nelson, Ron, Williamson, Tom, Espy, Michelle, Schroeder, Kat, and Hunter, James. Looking Inside a Tyrannosaur’s Skull. United States: N. p., 2017. Web.
Vogel, Sven, Nelson, Ron, Williamson, Tom, Espy, Michelle, Schroeder, Kat, & Hunter, James. Looking Inside a Tyrannosaur’s Skull. United States.
Vogel, Sven, Nelson, Ron, Williamson, Tom, Espy, Michelle, Schroeder, Kat, and Hunter, James. 2017. "Looking Inside a Tyrannosaur’s Skull". United States. doi:. https://www.osti.gov/servlets/purl/1375211.
@article{osti_1375211,
title = {Looking Inside a Tyrannosaur’s Skull},
author = {Vogel, Sven and Nelson, Ron and Williamson, Tom and Espy, Michelle and Schroeder, Kat and Hunter, James},
abstractNote = {Researchers using Los Alamos’ unique neutron-imaging and high-energy X-ray capabilities have exposed the inner structures of the fossil skull of a 74-million-year-old tyrannosauroid dinosaur nicknamed the Bisti Beast in the highest-resolution scan of tyrannosaur skull ever done.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 8
}
  • The availability of complete or nearly complete mouse, human, and rat genomes (in addition to those from many other species) has resulted in a series of new and powerful opportunities to apply the technologies and approaches developed for large-scale genome sequencing to the study of disease. New approaches to biological problems are being explored that involve concepts from computer science such as systems theory and modern large scale computing techniques. A recent project at Celera Genomics involved sequencing protein coding regions from several humans and a chimpanzee. Computational models of evolutionary divergence enabled us to identify genes with unique evolutionarymore » signatures. These genes give us some insight into features that may be uniquely human. The laboratory mouse and rat have long been favorite mammalian models of human disease. Integrated approaches to the study of disease that combine genetics, DNA sequence analysis, and careful analysis of phenotype at a molecular level are becoming more common and powerful. In addition, evaluation of the variation inherent in normal populations is now being used to build networks to describe heart function based on the interaction of multiple phenotypes in randomized populations using a factorial design.« less
  • As we celebrate the completion of the Standard Model with the discovery of a Higgs-like boson, some of us are working hard on what may be the next great discovery of particle physics. The problem of missing mass, which is now known as dark matter, has persisted for nearly a century. In this time, astrophysical evidence in favor of dark matter has only grown stronger. We now know that dark matter constitutes a majority of the matter in the Universe, yet it is not composed of any particle in the Standard Model. Dark matter is necessary for the formation ofmore » galaxies and galaxy clusters and hence has shaped the Universe as we know it. Despite this body of knowledge, we still don't know what particles compose dark matter or how they interact with the particles of the Standard Model. The answers to these remaining questions are being pursued on all frontiers of discovery. In this talk, I will provide an overview of the suite of experiments that is colloquially known as "direct detection" experiments. I will describe how these experiments aim to solve the dark matter puzzle, highlight some of the most promising efforts and conclude with a discussion on future prospects.« less
  • Of all of the known subatomic forces, the weak force is in many ways unique. One particularly interesting facet is that the force differentiates between a particle that is rotating clockwise and counterclockwise. In this video, Fermilab’s Dr. Don Lincoln describes this unusual property and introduces some of the historical figures who played a role in working it all out.
  • Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites ofmore » passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.« less
  • For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.