skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

Abstract

Here, the Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW th reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F 239 from 0.25 to 0.35, Daya Bay measures an average IBD yield ¯σf of (5.90±0.13)×10 –43 cm 2/fission and a fuel-dependent variation in the IBD yield, dσ f/dF 239, of (–1.86±0.18)×10 –43 cm 2/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect tomore » predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10 –43 cm 2/fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
Daya Bay Collaboration
OSTI Identifier:
1375196
Alternate Identifier(s):
OSTI ID: 1364208; OSTI ID: 1435088
Report Number(s):
BNL-114025-2017-JA
Journal ID: ISSN 0031-9007; PRLTAO; R&D Project: PO-022; KA2201020; TRN: US1702794
Grant/Contract Number:  
SC00112704; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 25; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; antineutrino; flux; energy; spectrum

Citation Formats

An, F. P., Balantekin, A. B., Band, H. R., Bishai, M., Blyth, S., Cao, D., Cao, G. F., Cao, J., Chan, Y. L., Chang, J. F., Chang, Y., Chen, H. S., Chen, Q. Y., Chen, S. M., Chen, Y. X., Chen, Y., Cheng, J., Cheng, Z. K., Cherwinka, J. J., Chu, M. C., Chukanov, A., Cummings, J. P., Ding, Y. Y., Diwan, M. V., Dolgareva, M., Dove, J., Dwyer, D. A., Edwards, W. R., Gill, R., Gonchar, M., Gong, G. H., Gong, H., Grassi, M., Gu, W. Q., Guo, L., Guo, X. H., Guo, Y. H., Guo, Z., Hackenburg, R. W., Hans, S., He, M., Heeger, K. M., Heng, Y. K., Higuera, A., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, E. C., Huang, H. X., Huang, X. T., Huang, Y. B., Huber, P., Huo, W., Hussain, G., Jaffe, D. E., Jen, K. L., Ji, X. P., Ji, X. L., Jiao, J. B., Johnson, R. A., Jones, D., Kang, L., Kettell, S. H., Khan, A., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, J. H. C., Lei, R. T., Leitner, R., Leung, J. K. C., Li, C., Li, D. J., Li, F., Li, G. S., Li, Q. J., Li, S., Li, S. C., Li, W. D., Li, X. N., Li, X. Q., Li, Y. F., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S., Lin, S. K., Lin, Y. -C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, J. L., Liu, J. C., Loh, C. W., Lu, C., Lu, H. Q., Lu, J. S., Luk, K. B., Ma, X. Y., Ma, X. B., Ma, Y. Q., Malyshkin, Y., Martinez Caicedo, D. A., McDonald, K. T., McKeown, R. D., Mitchell, I., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Ngai, H. Y., Ochoa-Ricoux, J. P., Olshevskiy, A., Pan, H. -R., Park, J., Patton, S., Pec, V., Peng, J. C., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Qiu, R. M., Raper, N., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Steiner, H., Stoler, P., Sun, J. L., Tang, W., Taychenachev, D., Treskov, K., Tsang, K. V., Tull, C. E., Viaux, N., Viren, B., Vorobel, V., Wang, C. H., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z. M., Wei, H. Y., Wen, L. J., Whisnant, K., White, C. G., Whitehead, L., Wise, T., Wong, H. L. H., Wong, S. C. F., Worcester, E., Wu, C. -H., Wu, Q., Wu, W. J., Xia, D. M., Xia, J. K., Xing, Z. Z., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, H., Yang, L., Yang, M. S., Yang, M. T., Yang, Y. Z., Ye, M., Ye, Z., Yeh, M., Young, B. L., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, C. C., Zhang, H. H., Zhang, J. W., Zhang, Q. M., Zhang, R., Zhang, X. T., Zhang, Y. M., Zhang, Y. X., Zhang, Y. M., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhou, L., Zhuang, H. L., and Zou, J. H. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.118.251801.
An, F. P., Balantekin, A. B., Band, H. R., Bishai, M., Blyth, S., Cao, D., Cao, G. F., Cao, J., Chan, Y. L., Chang, J. F., Chang, Y., Chen, H. S., Chen, Q. Y., Chen, S. M., Chen, Y. X., Chen, Y., Cheng, J., Cheng, Z. K., Cherwinka, J. J., Chu, M. C., Chukanov, A., Cummings, J. P., Ding, Y. Y., Diwan, M. V., Dolgareva, M., Dove, J., Dwyer, D. A., Edwards, W. R., Gill, R., Gonchar, M., Gong, G. H., Gong, H., Grassi, M., Gu, W. Q., Guo, L., Guo, X. H., Guo, Y. H., Guo, Z., Hackenburg, R. W., Hans, S., He, M., Heeger, K. M., Heng, Y. K., Higuera, A., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, E. C., Huang, H. X., Huang, X. T., Huang, Y. B., Huber, P., Huo, W., Hussain, G., Jaffe, D. E., Jen, K. L., Ji, X. P., Ji, X. L., Jiao, J. B., Johnson, R. A., Jones, D., Kang, L., Kettell, S. H., Khan, A., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, J. H. C., Lei, R. T., Leitner, R., Leung, J. K. C., Li, C., Li, D. J., Li, F., Li, G. S., Li, Q. J., Li, S., Li, S. C., Li, W. D., Li, X. N., Li, X. Q., Li, Y. F., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S., Lin, S. K., Lin, Y. -C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, J. L., Liu, J. C., Loh, C. W., Lu, C., Lu, H. Q., Lu, J. S., Luk, K. B., Ma, X. Y., Ma, X. B., Ma, Y. Q., Malyshkin, Y., Martinez Caicedo, D. A., McDonald, K. T., McKeown, R. D., Mitchell, I., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Ngai, H. Y., Ochoa-Ricoux, J. P., Olshevskiy, A., Pan, H. -R., Park, J., Patton, S., Pec, V., Peng, J. C., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Qiu, R. M., Raper, N., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Steiner, H., Stoler, P., Sun, J. L., Tang, W., Taychenachev, D., Treskov, K., Tsang, K. V., Tull, C. E., Viaux, N., Viren, B., Vorobel, V., Wang, C. H., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z. M., Wei, H. Y., Wen, L. J., Whisnant, K., White, C. G., Whitehead, L., Wise, T., Wong, H. L. H., Wong, S. C. F., Worcester, E., Wu, C. -H., Wu, Q., Wu, W. J., Xia, D. M., Xia, J. K., Xing, Z. Z., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, H., Yang, L., Yang, M. S., Yang, M. T., Yang, Y. Z., Ye, M., Ye, Z., Yeh, M., Young, B. L., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, C. C., Zhang, H. H., Zhang, J. W., Zhang, Q. M., Zhang, R., Zhang, X. T., Zhang, Y. M., Zhang, Y. X., Zhang, Y. M., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhou, L., Zhuang, H. L., & Zou, J. H. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. United States. doi:10.1103/PhysRevLett.118.251801.
An, F. P., Balantekin, A. B., Band, H. R., Bishai, M., Blyth, S., Cao, D., Cao, G. F., Cao, J., Chan, Y. L., Chang, J. F., Chang, Y., Chen, H. S., Chen, Q. Y., Chen, S. M., Chen, Y. X., Chen, Y., Cheng, J., Cheng, Z. K., Cherwinka, J. J., Chu, M. C., Chukanov, A., Cummings, J. P., Ding, Y. Y., Diwan, M. V., Dolgareva, M., Dove, J., Dwyer, D. A., Edwards, W. R., Gill, R., Gonchar, M., Gong, G. H., Gong, H., Grassi, M., Gu, W. Q., Guo, L., Guo, X. H., Guo, Y. H., Guo, Z., Hackenburg, R. W., Hans, S., He, M., Heeger, K. M., Heng, Y. K., Higuera, A., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, E. C., Huang, H. X., Huang, X. T., Huang, Y. B., Huber, P., Huo, W., Hussain, G., Jaffe, D. E., Jen, K. L., Ji, X. P., Ji, X. L., Jiao, J. B., Johnson, R. A., Jones, D., Kang, L., Kettell, S. H., Khan, A., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, J. H. C., Lei, R. T., Leitner, R., Leung, J. K. C., Li, C., Li, D. J., Li, F., Li, G. S., Li, Q. J., Li, S., Li, S. C., Li, W. D., Li, X. N., Li, X. Q., Li, Y. F., Li, Z. B., Liang, H., Lin, C. J., Lin, G. L., Lin, S., Lin, S. K., Lin, Y. -C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, J. L., Liu, J. C., Loh, C. W., Lu, C., Lu, H. Q., Lu, J. S., Luk, K. B., Ma, X. Y., Ma, X. B., Ma, Y. Q., Malyshkin, Y., Martinez Caicedo, D. A., McDonald, K. T., McKeown, R. D., Mitchell, I., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Ngai, H. Y., Ochoa-Ricoux, J. P., Olshevskiy, A., Pan, H. -R., Park, J., Patton, S., Pec, V., Peng, J. C., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Qiu, R. M., Raper, N., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Steiner, H., Stoler, P., Sun, J. L., Tang, W., Taychenachev, D., Treskov, K., Tsang, K. V., Tull, C. E., Viaux, N., Viren, B., Vorobel, V., Wang, C. H., Wang, M., Wang, N. Y., Wang, R. G., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z., Wang, Z. M., Wei, H. Y., Wen, L. J., Whisnant, K., White, C. G., Whitehead, L., Wise, T., Wong, H. L. H., Wong, S. C. F., Worcester, E., Wu, C. -H., Wu, Q., Wu, W. J., Xia, D. M., Xia, J. K., Xing, Z. Z., Xu, J. L., Xu, Y., Xue, T., Yang, C. G., Yang, H., Yang, L., Yang, M. S., Yang, M. T., Yang, Y. Z., Ye, M., Ye, Z., Yeh, M., Young, B. L., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, C. C., Zhang, H. H., Zhang, J. W., Zhang, Q. M., Zhang, R., Zhang, X. T., Zhang, Y. M., Zhang, Y. X., Zhang, Y. M., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhou, L., Zhuang, H. L., and Zou, J. H. Mon . "Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay". United States. doi:10.1103/PhysRevLett.118.251801. https://www.osti.gov/servlets/purl/1375196.
@article{osti_1375196,
title = {Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay},
author = {An, F. P. and Balantekin, A. B. and Band, H. R. and Bishai, M. and Blyth, S. and Cao, D. and Cao, G. F. and Cao, J. and Chan, Y. L. and Chang, J. F. and Chang, Y. and Chen, H. S. and Chen, Q. Y. and Chen, S. M. and Chen, Y. X. and Chen, Y. and Cheng, J. and Cheng, Z. K. and Cherwinka, J. J. and Chu, M. C. and Chukanov, A. and Cummings, J. P. and Ding, Y. Y. and Diwan, M. V. and Dolgareva, M. and Dove, J. and Dwyer, D. A. and Edwards, W. R. and Gill, R. and Gonchar, M. and Gong, G. H. and Gong, H. and Grassi, M. and Gu, W. Q. and Guo, L. and Guo, X. H. and Guo, Y. H. and Guo, Z. and Hackenburg, R. W. and Hans, S. and He, M. and Heeger, K. M. and Heng, Y. K. and Higuera, A. and Hsiung, Y. B. and Hu, B. Z. and Hu, T. and Huang, E. C. and Huang, H. X. and Huang, X. T. and Huang, Y. B. and Huber, P. and Huo, W. and Hussain, G. and Jaffe, D. E. and Jen, K. L. and Ji, X. P. and Ji, X. L. and Jiao, J. B. and Johnson, R. A. and Jones, D. and Kang, L. and Kettell, S. H. and Khan, A. and Kohn, S. and Kramer, M. and Kwan, K. K. and Kwok, M. W. and Langford, T. J. and Lau, K. and Lebanowski, L. and Lee, J. and Lee, J. H. C. and Lei, R. T. and Leitner, R. and Leung, J. K. C. and Li, C. and Li, D. J. and Li, F. and Li, G. S. and Li, Q. J. and Li, S. and Li, S. C. and Li, W. D. and Li, X. N. and Li, X. Q. and Li, Y. F. and Li, Z. B. and Liang, H. and Lin, C. J. and Lin, G. L. and Lin, S. and Lin, S. K. and Lin, Y. -C. and Ling, J. J. and Link, J. M. and Littenberg, L. and Littlejohn, B. R. and Liu, J. L. and Liu, J. C. and Loh, C. W. and Lu, C. and Lu, H. Q. and Lu, J. S. and Luk, K. B. and Ma, X. Y. and Ma, X. B. and Ma, Y. Q. and Malyshkin, Y. and Martinez Caicedo, D. A. and McDonald, K. T. and McKeown, R. D. and Mitchell, I. and Nakajima, Y. and Napolitano, J. and Naumov, D. and Naumova, E. and Ngai, H. Y. and Ochoa-Ricoux, J. P. and Olshevskiy, A. and Pan, H. -R. and Park, J. and Patton, S. and Pec, V. and Peng, J. C. and Pinsky, L. and Pun, C. S. J. and Qi, F. Z. and Qi, M. and Qian, X. and Qiu, R. M. and Raper, N. and Ren, J. and Rosero, R. and Roskovec, B. and Ruan, X. C. and Steiner, H. and Stoler, P. and Sun, J. L. and Tang, W. and Taychenachev, D. and Treskov, K. and Tsang, K. V. and Tull, C. E. and Viaux, N. and Viren, B. and Vorobel, V. and Wang, C. H. and Wang, M. and Wang, N. Y. and Wang, R. G. and Wang, W. and Wang, X. and Wang, Y. F. and Wang, Z. and Wang, Z. and Wang, Z. M. and Wei, H. Y. and Wen, L. J. and Whisnant, K. and White, C. G. and Whitehead, L. and Wise, T. and Wong, H. L. H. and Wong, S. C. F. and Worcester, E. and Wu, C. -H. and Wu, Q. and Wu, W. J. and Xia, D. M. and Xia, J. K. and Xing, Z. Z. and Xu, J. L. and Xu, Y. and Xue, T. and Yang, C. G. and Yang, H. and Yang, L. and Yang, M. S. and Yang, M. T. and Yang, Y. Z. and Ye, M. and Ye, Z. and Yeh, M. and Young, B. L. and Yu, Z. Y. and Zeng, S. and Zhan, L. and Zhang, C. and Zhang, C. C. and Zhang, H. H. and Zhang, J. W. and Zhang, Q. M. and Zhang, R. and Zhang, X. T. and Zhang, Y. M. and Zhang, Y. X. and Zhang, Y. M. and Zhang, Z. J. and Zhang, Z. Y. and Zhang, Z. P. and Zhao, J. and Zhou, L. and Zhuang, H. L. and Zou, J. H.},
abstractNote = {Here, the Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GWth reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective 239Pu fission fractions F239 from 0.25 to 0.35, Daya Bay measures an average IBD yield ¯σf of (5.90±0.13)×10–43 cm2/fission and a fuel-dependent variation in the IBD yield, dσf/dF239, of (–1.86±0.18)×10–43 cm2/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the 239Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes 235U, 239Pu, 238U, and 241Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10–43 cm2/fission have been determined for the two dominant fission parent isotopes 235U and 239Pu. A 7.8% discrepancy between the observed and predicted 235U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.},
doi = {10.1103/PhysRevLett.118.251801},
journal = {Physical Review Letters},
issn = {0031-9007},
number = 25,
volume = 118,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Investigating the spectral anomaly with different reactor antineutrino experiments
journal, February 2017


Determination of antineutrino spectra from nuclear reactors
journal, August 2011


Determination of the antineutrino spectrum from 235U thermal neutron fission products up to 9.5 MeV
journal, October 1985


A side-by-side comparison of Daya Bay antineutrino detectors
journal, September 2012

  • An, F. P.; An, Q.; Bai, J. Z.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 685
  • DOI: 10.1016/j.nima.2012.05.030

Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for U 235 ( n , fission ) at Thermal and Fast Neutron Energies
journal, April 2016


The detector system of the Daya Bay reactor neutrino experiment
journal, March 2016

  • An, F. P.; Bai, J. Z.; Balantekin, A. B.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 811
  • DOI: 10.1016/j.nima.2015.11.144

A novel segmented-scintillator antineutrino detector
journal, April 2017


Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
journal, January 2017


Reactor antineutrino fluxes – Status and challenges
journal, July 2016


Spectral Structure of Electron Antineutrinos from Nuclear Reactors
journal, January 2015


Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector
journal, March 2009

  • Bowden, N. S.; Bernstein, A.; Dazeley, S.
  • Journal of Applied Physics, Vol. 105, Issue 6, Article No. 064902
  • DOI: 10.1063/1.3080251

Apollo2 year 2010
journal, October 2010

  • Sanchez, Richard; Zmijarevi, Igor; Coste-Delclaux, M.
  • Nuclear Engineering and Technology, Vol. 42, Issue 5
  • DOI: 10.5516/NET.2010.42.5.474

Improved calculation of the energy release in neutron-induced fission
journal, July 2013


Experimental beta-spectra from 239Pu and 235U thermal neutron fission products and their correlated antineutrino spectra
journal, December 1982


Reactor antineutrino spectra and their application to antineutrino-induced reactions. II
journal, October 1981


Possible origins and implications of the shoulder in reactor neutrino spectra
journal, August 2015


The impact of sterile neutrinos on CP measurements at long baselines
journal, November 2015

  • Gandhi, Raj; Kayser, Boris; Masud, Mehedi
  • Journal of High Energy Physics, Vol. 2015, Issue 11
  • DOI: 10.1007/JHEP11(2015)039

Physics reach of DUNE with a light sterile neutrino
journal, September 2016

  • Agarwalla, Sanjib Kumar; Chatterjee, Sabya Sachi; Palazzo, Antonio
  • Journal of High Energy Physics, Vol. 2016, Issue 9
  • DOI: 10.1007/JHEP09(2016)016

NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum
journal, January 2017


Neutrino method remote measurement of reactor power and power output
journal, February 1994

  • Klimov, Yu. V.; Kopeikin, V. I.; Mikaélyan, L. A.
  • Atomic Energy, Vol. 76, Issue 2
  • DOI: 10.1007/BF02414355

Antineutrino Monitoring for Heavy Water Reactors
journal, July 2014


Future short-baseline sterile neutrino searches with reactors
conference, January 2015

  • Lhuillier, D.
  • XXVI INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS: Neutrino 2014, AIP Conference Proceedings
  • DOI: 10.1063/1.4915600

Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay
journal, February 2016


Improved predictions of reactor antineutrino spectra
journal, May 2011


Reactor antineutrino anomaly
journal, April 2011


Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
journal, April 2017


Sterile neutrino oscillations: the global picture
journal, May 2013

  • Kopp, Joachim; Machado, Pedro A. N.; Maltoni, Michele
  • Journal of High Energy Physics, Vol. 2013, Issue 5
  • DOI: 10.1007/JHEP05(2013)050

Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly
journal, May 2014


Antineutrino Reactor Safeguards: A Case Study of the DPRK 1994 Nuclear Crisis
journal, January 2015


Improved measurements of the neutrino mixing angle θ 13 with the Double Chooz detector
journal, October 2014

  • Abe, Y.; dos Anjos, J. C.; Barriere, J. C.
  • Journal of High Energy Physics, Vol. 2014, Issue 10
  • DOI: 10.1007/JHEP10(2014)086

The PROSPECT physics program
journal, October 2016

  • Ashenfelter, J.; Balantekin, A. B.; Band, H. R.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 43, Issue 11
  • DOI: 10.1088/0954-3899/43/11/113001

Reactor Neutrino Spectra
journal, October 2016


    Works referencing / citing this record:

    Experimental beta-spectra from 239Pu and 235U thermal neutron fission products and their correlated antineutrino spectra
    journal, December 1982


    Determination of the antineutrino spectrum from 235U thermal neutron fission products up to 9.5 MeV
    journal, October 1985


    A side-by-side comparison of Daya Bay antineutrino detectors
    journal, September 2012

    • An, F. P.; An, Q.; Bai, J. Z.
    • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 685
    • DOI: 10.1016/j.nima.2012.05.030

    The detector system of the Daya Bay reactor neutrino experiment
    journal, March 2016

    • An, F. P.; Bai, J. Z.; Balantekin, A. B.
    • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 811
    • DOI: 10.1016/j.nima.2015.11.144

    Reactor antineutrino fluxes – Status and challenges
    journal, July 2016


    Investigating the spectral anomaly with different reactor antineutrino experiments
    journal, February 2017


    Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector
    journal, March 2009

    • Bowden, N. S.; Bernstein, A.; Dazeley, S.
    • Journal of Applied Physics, Vol. 105, Issue 6, Article No. 064902
    • DOI: 10.1063/1.3080251

    Future short-baseline sterile neutrino searches with reactors
    conference, January 2015

    • Lhuillier, D.
    • XXVI INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS: Neutrino 2014, AIP Conference Proceedings
    • DOI: 10.1063/1.4915600

    Antineutrino Reactor Safeguards: A Case Study of the DPRK 1994 Nuclear Crisis
    journal, January 2015


    The PROSPECT physics program
    journal, October 2016

    • Ashenfelter, J.; Balantekin, A. B.; Band, H. R.
    • Journal of Physics G: Nuclear and Particle Physics, Vol. 43, Issue 11
    • DOI: 10.1088/0954-3899/43/11/113001

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
    journal, January 2017


    Reactor Neutrino Spectra
    journal, October 2016