skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Majorana Demonstrator calibration system

Abstract

The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-ton 76Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source are designed to be controlled by the data acquisition system and do not require any direct human interaction. In this study, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [1];  [7];  [8];  [9];  [10];  [11];  [6];  [9];  [9];  [11];  [12];  [13];  [6];  [9] more »;  [6];  [10];  [14];  [6];  [15];  [9];  [9];  [16];  [10];  [10];  [2];  [10];  [17];  [18];  [19];  [4];  [2];  [12];  [10];  [20];  [6];  [10];  [1];  [2];  [10];  [1];  [5];  [10];  [10];  [6];  [9];  [10];  [7];  [11];  [16];  [10];  [5];  [7];  [21];  [10];  [6];  [22];  [16];  [17];  [5];  [4];  [7];  [6] « less
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Univ. of South Carolina, Columbia, SC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. National Research Center "Kurchatov Institute" Institute for Theoretical and Experimental Physics, Moscow (Russia)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  7. Joint Institute for Nuclear Research, Dubna (Russia)
  8. Duke Univ., Durham, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)
  9. Univ. of Washington, Seattle, WA (United States)
  10. Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)
  11. South Dakota School of Mines and Technology, Rapid City, SD (United States)
  12. Univ. of Tennessee, Knoxville, TN (United States)
  13. Osaka Univ., Osaka (Japan)
  14. Princeton Univ., Princeton, NJ (United States)
  15. North Carolina State Univ., Raleigh, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  16. Univ. of South Carolina, Columbia, SC (United States)
  17. Univ. of South Dakota, Vermillion, SD (United States)
  18. Black Hills State Univ., Spearfish, SD (United States)
  19. Tennessee Technological Univ., Cookeville, TN (United States)
  20. Queen's Univ., Kingston, ON (Canada)
  21. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  22. Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1375174
Report Number(s):
LA-UR-17-20458
Journal ID: ISSN 0168-9002; TRN: US1702560
Grant/Contract Number:
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 872; Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; Atomic and Nuclear Physics; Majorana Demonstrator, Calibration, Double-beta decay, detector performance

Citation Formats

Abgrall, N., Arnquist, I. J., Avignone, III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Fu, Z., Gehman, V. M., Gilliss, T., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Henning, R., Hoppe, E. W., Howe, M. A., Jasinski, B. R., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., MacMullin, J., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Orrell, J. L., O’Shaughnessy, C., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.. The Majorana Demonstrator calibration system. United States: N. p., 2017. Web. doi:10.1016/j.nima.2017.08.005.
Abgrall, N., Arnquist, I. J., Avignone, III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Fu, Z., Gehman, V. M., Gilliss, T., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Henning, R., Hoppe, E. W., Howe, M. A., Jasinski, B. R., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., MacMullin, J., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Orrell, J. L., O’Shaughnessy, C., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yu, C. -H., Yumatov, V., Zhitnikov, I., & Zhu, B. X.. The Majorana Demonstrator calibration system. United States. doi:10.1016/j.nima.2017.08.005.
Abgrall, N., Arnquist, I. J., Avignone, III, F. T., Barabash, A. S., Bertrand, F. E., Boswell, M., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Fu, Z., Gehman, V. M., Gilliss, T., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Henning, R., Hoppe, E. W., Howe, M. A., Jasinski, B. R., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., MacMullin, J., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Orrell, J. L., O’Shaughnessy, C., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.. 2017. "The Majorana Demonstrator calibration system". United States. doi:10.1016/j.nima.2017.08.005.
@article{osti_1375174,
title = {The Majorana Demonstrator calibration system},
author = {Abgrall, N. and Arnquist, I. J. and Avignone, III, F. T. and Barabash, A. S. and Bertrand, F. E. and Boswell, M. and Bradley, A. W. and Brudanin, V. and Busch, M. and Buuck, M. and Caldwell, T. S. and Christofferson, C. D. and Chu, P. -H. and Cuesta, C. and Detwiler, J. A. and Dunagan, C. and Efremenko, Yu. and Ejiri, H. and Elliott, S. R. and Fu, Z. and Gehman, V. M. and Gilliss, T. and Giovanetti, G. K. and Goett, J. and Green, M. P. and Gruszko, J. and Guinn, I. S. and Guiseppe, V. E. and Haufe, C. R. and Henning, R. and Hoppe, E. W. and Howe, M. A. and Jasinski, B. R. and Keeter, K. J. and Kidd, M. F. and Konovalov, S. I. and Kouzes, R. T. and Lopez, A. M. and MacMullin, J. and Martin, R. D. and Massarczyk, R. and Meijer, S. J. and Mertens, S. and Orrell, J. L. and O’Shaughnessy, C. and Poon, A. W. P. and Radford, D. C. and Rager, J. and Reine, A. L. and Rielage, K. and Robertson, R. G. H. and Shanks, B. and Shirchenko, M. and Suriano, A. M. and Tedeschi, D. and Trimble, J. E. and Varner, R. L. and Vasilyev, S. and Vetter, K. and Vorren, K. and White, B. R. and Wilkerson, J. F. and Wiseman, C. and Xu, W. and Yu, C. -H. and Yumatov, V. and Zhitnikov, I. and Zhu, B. X.},
abstractNote = {The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-ton 76Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source are designed to be controlled by the data acquisition system and do not require any direct human interaction. In this study, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.},
doi = {10.1016/j.nima.2017.08.005},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 872,
place = {United States},
year = 2017,
month = 8
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 8, 2018
Publisher's Version of Record

Save / Share:
  • Here, we report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MajoranaDemonstratormuon veto system arranged in two different configurations. The measured total flux is (5.31±0.17)× 10–9μ/s/cm 2.
  • The MAJORANA DEMONSTRATOR (MJD) is an ultra-low background neutrinoless double-beta decay (0νββ) experiment that will deploy up to 40 kg of high purity germanium detectors (HPGe). The goal of this experiment is to demonstrate the feasibility of building a detector array with less than 1 event/ton-year in a 4 keV region of interest around the 0νββ signal. HPGe diodes, when used as ionizing radiation detectors, need to be maintained at a temperature close to that of liquid nitrogen (77 K). This work describes the R&D results of a cryogenic system capable of meeting the requirements of low background and themore » cooling capacity required to successfully operate such a detector system. The MJD germanium detector modules will operate at liquid nitrogen temperature to provide adequate cooling for a full range of HPGe impurity concentrations. This paper shows the experimental results obtained using a two-phase horizontal thermosyphon using liquid nitrogen as the MJD’s cooling system. The cold test shows that the proposed thermosyphon has sufficient cooling power to handle the heat load of an MJD module. Results for the temperature gradient across the thermosyphon, cooling capacity, and design considerations demonstrate that the thermosyphon can effectively remove the calculated heat load of each module of the experiment. The thermosyphon will be bolted to a cold plate from which detector strings will hang. The thermal conductivity of a mockup of the MJD bolted thermal joint is experimentally determined to be below 0.1 K/W.« less
  • Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors,more » to search for the 0νββ decay of ⁷⁶Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for ⁷⁶Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.« less
  • Tmore » he M ajorana D emonstrator will search for the neutrinoless double-beta ( β β 0 ν ) decay of the isotope Ge with a mixed array of enriched and natural germanium detectors. he observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. he D emonstrator is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. he array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the D emonstrator and the details of its design.« less
    Cited by 50