skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Results from Newberry Volcano EGS Demonstration, 2010–2014

; ; ; ; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Additional Journal Information:
Journal Volume: 63; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-08-10 05:47:54; Journal ID: ISSN 0375-6505
Country of Publication:
United Kingdom

Citation Formats

Cladouhos, Trenton T., Petty, Susan, Swyer, Michael W., Uddenberg, Matthew E., Grasso, Kyla, and Nordin, Yini. Results from Newberry Volcano EGS Demonstration, 2010–2014. United Kingdom: N. p., 2016. Web. doi:10.1016/j.geothermics.2015.08.009.
Cladouhos, Trenton T., Petty, Susan, Swyer, Michael W., Uddenberg, Matthew E., Grasso, Kyla, & Nordin, Yini. Results from Newberry Volcano EGS Demonstration, 2010–2014. United Kingdom. doi:10.1016/j.geothermics.2015.08.009.
Cladouhos, Trenton T., Petty, Susan, Swyer, Michael W., Uddenberg, Matthew E., Grasso, Kyla, and Nordin, Yini. 2016. "Results from Newberry Volcano EGS Demonstration, 2010–2014". United Kingdom. doi:10.1016/j.geothermics.2015.08.009.
title = {Results from Newberry Volcano EGS Demonstration, 2010–2014},
author = {Cladouhos, Trenton T. and Petty, Susan and Swyer, Michael W. and Uddenberg, Matthew E. and Grasso, Kyla and Nordin, Yini},
abstractNote = {},
doi = {10.1016/j.geothermics.2015.08.009},
journal = {Geothermics},
number = C,
volume = 63,
place = {United Kingdom},
year = 2016,
month = 9

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.geothermics.2015.08.009

Save / Share:
  • Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project's water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly informmore » stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.« less
  • Newberry 2 was drilled in the caldera floor of Newberry Volcano, Oregon, by the US Geological Survey during 1979-81. The maximum temperature measured was 265C at the bottom of the hole, 932 m below the surface. Rocks recovered fr9om the drill hole are divided into three intervals on the basis of hydrothermal alteration and mineral deposition: (1) 0-290 m consists of unaltered, largely glassy volcanic material, with present temperatures ranging from 20 to 40C; (2) 290-700 m consists of permeable tuff layers, tuff breccia units, and brecciated and fractured rhyodacitic to dacitic lava flows, with temperatures ranging from 40 tomore » 100C; (3) 700-932 m consists of impermeable andesitic to basaltic lava flows that generally show little effect of alteration, interlayered with permeable hydrothermally altered flow breccia, with temperatures gradually increasing from 100 at 700 m to 265C at 932 m. Hydrothermal alteration throughout the system is controlled by rock permeability, temperature, composition of geothermal fluids, and composition and crystallinity of host rocks. Rock alteration consists mainly of replacement of glass by clay minerals and, locally, zeolites, partial replacement of plagioclase phenocrysts by calcite +/- epidote +/- illite, and whole-rock leaching adjacent to fluids channels. Open-space deposition of hydrothermal minerals in fractures, vesicles, and interbreccia pore space is far more abundant than replacement. A cooling shallow convection system in the upper 700 m is indicated by the occurrence of hydrothermal minerals that were deposited in a slightly higher temperature environment than presently exists. Below 700 m, the heat flow is conductive, and fluid flow is controlled by horizontal lava flows. Homogenization temperatures of secondary quartz fluid inclusions were as high as 370C.« less
  • A 180-km-long seismic refraction transect from the eastern High Cascades, across Newberry Volcano, to the eastern High Lava Plains is used to investigate the subvolcanic crustal and upper mantle velocity structure there. Near-surface volcanic flows and sedimentary debris (1.6--4.7 km/s), ranging from 3 to 5 km in thickness, overlie subvolcanic Basin and Range structures. East and west of Newberry Volcano, the subvolcanic basement (5.6 km/s) has been downwarped, producing 5-km-deep basins. The midcrust (8- to 28-km depth) is characterized by velocities ranging from 6.1 to 6.5 km/s and varies laterally in thicknesses. The lowercrust is characterized by an unusually highmore » velocity (about 7.4 km/s), and its geometry mirrors the subvolcanic basement geometry. The Moho is located at a depth of 37 km and represents a transition to an upper mantle velocity of 8.1 km/s. The shallow subsurface (1.2 km) beneath Newberry Volcano is characterized by high-velocity (5.6 km/s, versus 4.1 km/s for the surrounding area) intrusions and appears to be located on a basement high. Beneath the seismic fraction array at Newberry Volcano, an absence of low-velocity anomalies suggests that large silicic magma chambers do not exist in the upper crust, but apparent high attenuation of the seismic wave field may be consistent with either partial melts in small volumes, elevated crustal temperatures, and/or poor geophone-recording site coupling. The east central Oregon velocity structure is nearly identical to that of the northwestern Nevada Basin and Range and the Modoc Plateau of northeastern California, and variations in the deep crustal structure about Newberry Volcano are consistent with tectonism involving crustal underplating, melting, and extension.« less
  • At Newberry Volcano, central Oregon, more than 0.5 m.y. of magmatic activity, including caldera collapse and renewed caldera-filling volcanism, has created a structural and thermal chimney that channels magma ascent. Holocene rhyolitic eruptions (1) have been confined mainly within the caldera in an area 5 km in diameter, (2) have been very similar in chemical composition, phenocryst mineralogy, and eruptive style, and (3) have occurred as recently as 1300 years ago, with repose periods of 2000--3000 years between eruptions. Holocene basaltic andesite eruptions are widespread on the flanks but are excluded from the area of rhyolitic volcanism. Basaltic andesite inmore » fissures at the edge of the rhyolite area has silicic inclusions and shows mixed basalt-rhyolite magma relations. These geologic relations and the high geothermal gradient that characterizes the lower part of a drill hole in the caldera (U.S. Geological Survey Newberry 2) indicate that a rhyolitic magma chamber has existed beneath the caldera throughout the Holocene. Its longevity probably is a result of intermittent underplating by basaltic magma.« less
  • Results of recent geological and geophysical studies at Newberry Volcano have been incorporated into conceptual and numerical models of a magma-based hydrothermal system. Numerical simulations begin with emplacement of a small magma body, the presumed source of silicic eruptions at Newberry that began about 10,000 B.P., into a thermal regime representing 100,000 years of cooling of a large underlying intrusion. Simulated flow patterns and thermal histories for three sets of hypothetical permeability values are compatible with data from four geothermal drill holes on the volcano. Meteoric recharge cools the caldera-fill deposits, but thermal water moving up a central conduit representingmore » a permeable volcanic vent produces temperatures close to those observed in drill holes within the caldera. Meteoric recharge from the caldera moves down the flanks and creates a near-isothermal zone that extends several hundred meters below the water table, producing temperature profiles similar to those observed in drill holes on the flanks. The temperatures observed in drill holes on the flanks are not influenced by the postulated Holocene magma body. The elevated temperature gradients measured in the lower portions of these holes may be related to the cumulative effect of older intrusions. The models also indicate that meteoric recharge to the deep hydrothermal system probably originates within or near the caldera. Relatively low fluid velocities at depth suggest that at least a significant fraction of the thermal fluid may be very old.« less