skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods and compositions for identification of source of microbial contamination in a sample

Abstract

Herein are described 1058 different bacterial taxa that were unique to either human, grazing mammal, or bird fecal wastes. These identified taxa can serve as specific identifier taxa for these sources in environmental waters. Two field tests in marine waters demonstrate the capacity of phylogenetic microarray analysis to track multiple sources with one test.

Inventors:
;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1374577
Patent Number(s):
9,725,770
Application Number:
13/787,500
Assignee:
The Regents of the University of California LBNL
DOE Contract Number:
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Mar 06
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Andersen, Gary L., and Dubinsky, Eric A. Methods and compositions for identification of source of microbial contamination in a sample. United States: N. p., 2017. Web.
Andersen, Gary L., & Dubinsky, Eric A. Methods and compositions for identification of source of microbial contamination in a sample. United States.
Andersen, Gary L., and Dubinsky, Eric A. 2017. "Methods and compositions for identification of source of microbial contamination in a sample". United States. doi:. https://www.osti.gov/servlets/purl/1374577.
@article{osti_1374577,
title = {Methods and compositions for identification of source of microbial contamination in a sample},
author = {Andersen, Gary L. and Dubinsky, Eric A.},
abstractNote = {Herein are described 1058 different bacterial taxa that were unique to either human, grazing mammal, or bird fecal wastes. These identified taxa can serve as specific identifier taxa for these sources in environmental waters. Two field tests in marine waters demonstrate the capacity of phylogenetic microarray analysis to track multiple sources with one test.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 8
}

Patent:

Save / Share:
  • Compositions, methods and devices for bioremediation that comprise components of constructed microbial mats with organic and inorganic materials are described. The compositions, methods and devices can be used for bioremediation of different individual contaminants and for mixed or multiple contaminants, and for production of beneficial compositions and molecules.
  • In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections,more » and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.« less
  • Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.
  • Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.
  • Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.