skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

Abstract

Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.

Inventors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1374565
Patent Number(s):
9,725,829
Application Number:
13/833,834
Assignee:
UT-BATTELLE, LLC ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Mar 15
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Naskar, Amit K., Ozcan, Soydan, Eberle, Claude C., Abdallah, Mohamed Gabr, Mackiewicz, Ludtka Gail, Ludtka, Gerard Michael, Paulauskas, Felix Leonard, and Rivard, John Daniel Kennedy. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby. United States: N. p., 2017. Web.
Naskar, Amit K., Ozcan, Soydan, Eberle, Claude C., Abdallah, Mohamed Gabr, Mackiewicz, Ludtka Gail, Ludtka, Gerard Michael, Paulauskas, Felix Leonard, & Rivard, John Daniel Kennedy. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby. United States.
Naskar, Amit K., Ozcan, Soydan, Eberle, Claude C., Abdallah, Mohamed Gabr, Mackiewicz, Ludtka Gail, Ludtka, Gerard Michael, Paulauskas, Felix Leonard, and Rivard, John Daniel Kennedy. 2017. "Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby". United States. doi:. https://www.osti.gov/servlets/purl/1374565.
@article{osti_1374565,
title = {Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby},
author = {Naskar, Amit K. and Ozcan, Soydan and Eberle, Claude C. and Abdallah, Mohamed Gabr and Mackiewicz, Ludtka Gail and Ludtka, Gerard Michael and Paulauskas, Felix Leonard and Rivard, John Daniel Kennedy},
abstractNote = {Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 8
}

Patent:

Save / Share:
  • Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.
  • A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrodemore » containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.« less
  • A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and amore » second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.« less
  • A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrodemore » containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.« less
  • The adhesion of carbon fibers to several high performance polymers, including a phosphorus-containing bismaleimite, a cyanate ester resin, and a pyridine-containing thermoplastic, was evaluated using the microbond single fiber pull-out test. The objective was to determine the chemical and mechanical properties of the fiber and the polymer which affect the fiber/polymer adhesion in a given composite system. Fiber/matrix adhesion is of interest since the degree of adhesion and the nature of the fiber/matrix interphase has a major influence on the mechanical properties of a composite. The surface chemical composition, topography, tensile strength, and surface energy of untreated AU-4 and commerciallymore » surface treated AS-4 carbon fibers were evaluated using x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), single fiber tensile tests, and dynamic contact angle analysis. The commercial surface treatment which converted the AU-4 to the AS-4 fiber oxidized the carbon fiber surface. The surface of the AS-4 carbon fiber was further modified using air, oxygen, ammonia, and ethylene plasmas. The AS-4 fiber tow was also characterized following exposure to the aqueous poly(amic acid) solution used to disperse the matrix powder during aqueous suspension prepregging of thermoplastic matrix composites. The air and oxygen plasma treatments significantly oxidized and roughened the surface of the AS-4 carbon fibers. In addition, the air and oxygen plasma increased the polar component of the AS-4 fiber surface energy. The ammonia plasma increased the concentration of nitrogen on the fiber surface, without significantly altering the fiber topography (at a magnification of 50,000X). The atomic oxygen present in the air and oxygen plasma treatments is capable of reacting with both the edge and basal planes in the carbon fiber structure. As a result, the oxygen-containing plasmas progressively ablated the organic material in the carbon fiber surface.« less