skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

Abstract

Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution. The first objective of the project was to understand and quantify the interactions of biogenic and anthropogenic emissions with respect to the production of secondary organic material. In clean conditions in the Amazon basin, secondary organic material dominates the diameter distribution of the submicron particles. How and why is the diameter distribution shifted by pollution? The second objective followed frommore » the first in that, although the diameter distribution is dominated by secondary organic material, the actual source of new particle production remains uncertain (i.e., the number concentration). The second objective was to test the hypothesis that new particles under natural conditions are produced as a result of evaporation of primary particles emitted by fungal spores as well as to investigate any shifts in this mechanism under pollution conditions, e.g., in consequence to the high concentrations of SO 2 in the pollution plume. Combined, the number-diameter distribution is the key connection to upscaling to the effects of aerosol particles on clouds and climate. Understanding this upscaling under clean and pollution conditions, including differences, was the third objective.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1374492
Report Number(s):
DE-SC0011105
GoAmazon
DOE Contract Number:  
SC0011105
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 54 ENVIRONMENTAL SCIENCES; GoAmazon; Biogenic-anthropogenic; SOA; OFR; Amazon; BVOC, aerosol

Citation Formats

Jimenez, Jose-Luis, Day, Douglas A., Martin, Scot T., Kim, Saewung, Smith, James, Souza, Rodrigo, and Barbosa, Henry. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs). United States: N. p., 2017. Web. doi:10.2172/1374492.
Jimenez, Jose-Luis, Day, Douglas A., Martin, Scot T., Kim, Saewung, Smith, James, Souza, Rodrigo, & Barbosa, Henry. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs). United States. doi:10.2172/1374492.
Jimenez, Jose-Luis, Day, Douglas A., Martin, Scot T., Kim, Saewung, Smith, James, Souza, Rodrigo, and Barbosa, Henry. Fri . "Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)". United States. doi:10.2172/1374492. https://www.osti.gov/servlets/purl/1374492.
@article{osti_1374492,
title = {Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)},
author = {Jimenez, Jose-Luis and Day, Douglas A. and Martin, Scot T. and Kim, Saewung and Smith, James and Souza, Rodrigo and Barbosa, Henry},
abstractNote = {Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution. The first objective of the project was to understand and quantify the interactions of biogenic and anthropogenic emissions with respect to the production of secondary organic material. In clean conditions in the Amazon basin, secondary organic material dominates the diameter distribution of the submicron particles. How and why is the diameter distribution shifted by pollution? The second objective followed from the first in that, although the diameter distribution is dominated by secondary organic material, the actual source of new particle production remains uncertain (i.e., the number concentration). The second objective was to test the hypothesis that new particles under natural conditions are produced as a result of evaporation of primary particles emitted by fungal spores as well as to investigate any shifts in this mechanism under pollution conditions, e.g., in consequence to the high concentrations of SO2 in the pollution plume. Combined, the number-diameter distribution is the key connection to upscaling to the effects of aerosol particles on clouds and climate. Understanding this upscaling under clean and pollution conditions, including differences, was the third objective.},
doi = {10.2172/1374492},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Aug 04 00:00:00 EDT 2017},
month = {Fri Aug 04 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: