skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction

Abstract

Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescence phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [1];  [1]; ORCiD logo [3];  [2];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  3. Missouri Univ. of Science and Technology, Rolla, MO (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1374441
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; applied physics; characterization and analytical techniques; mechanical engineering

Citation Formats

Zhao, Cang, Fezzaa, Kamel, Cunningham, Ross W., Wen, Haidan, De Carlo, Francesco, Chen, Lianyi, Rollett, Anthony D., and Sun, Tao. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. United States: N. p., 2017. Web. doi:10.1038/s41598-017-03761-2.
Zhao, Cang, Fezzaa, Kamel, Cunningham, Ross W., Wen, Haidan, De Carlo, Francesco, Chen, Lianyi, Rollett, Anthony D., & Sun, Tao. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. United States. doi:10.1038/s41598-017-03761-2.
Zhao, Cang, Fezzaa, Kamel, Cunningham, Ross W., Wen, Haidan, De Carlo, Francesco, Chen, Lianyi, Rollett, Anthony D., and Sun, Tao. 2017. "Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction". United States. doi:10.1038/s41598-017-03761-2. https://www.osti.gov/servlets/purl/1374441.
@article{osti_1374441,
title = {Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction},
author = {Zhao, Cang and Fezzaa, Kamel and Cunningham, Ross W. and Wen, Haidan and De Carlo, Francesco and Chen, Lianyi and Rollett, Anthony D. and Sun, Tao},
abstractNote = {Here, we employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescence phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from β to α’ phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.},
doi = {10.1038/s41598-017-03761-2},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = 2017,
month = 6
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Detailed understanding of the complex melt pool physics plays a vital role in predicting optimal processing regimes in laser powder bed fusion additive manufacturing. In this work, we use high framerate video recording of Selective Laser Melting (SLM) to provide useful insight on the laser-powder interaction and melt pool evolution of 316 L powder layers, while also serving as a novel instrument to quantify cooling rates of the melt pool. The experiment was performed using two powder types – one gas- and one water-atomized – to further clarify how morphological and chemical differences between these two feedstock materials influence themore » laser melting process. Finally, experimentally determined cooling rates are compared with values obtained through computer simulation, and the relationship between cooling rate and grain cell size is compared with data previously published in the literature.« less
  • A recently developed spatially resolved X-ray diffraction (SRXRD) technique utilizing intense synchrotron radiation has been refined to yield phase and microstructural information down to 200 {micro}m in spatial extent in materials subjected to steep thermal gradients during processing. This SRXRD technique has been applied to map completely the phases and their solid-state transformation in the so-called heat-affected zone (HAZ) in titanium fusion welds in situ during the welding process. Detailed profile analysis of the SRXRD patterns revealed four principal microstructural regions at temperature in the vicinity of the HAZ surrounding the liquid weld pool: (i) a completely transformed {beta}-Ti zonemore » 2--3 mm adjacent to the liquid weld pool; (ii) a mixed {alpha} + {beta}-it region surrounding the pure {beta}-Ti zone, (iii) a back-transformed {alpha}-Ti zone on the backside of the HAZ where pure {beta}-Ti once existed at temperature well above the {alpha} {r_arrow} {beta} transformation isotherm, and (iv) a more diffused region outside the HAZ where annealing and recrystallization of the {alpha}-it base metal occur. The high-temperature microstructures so derived corroborate well the expected transformation kinetics in pure titanium, and the observed phase transformation boundaries are in good agreement with those predicted from the transformation isotherms calculated from a simplified heat-flow model. Based on a detailed assessment of the SRXRD setup employed, improved experimentations such as a smaller beam spot emitted from third generation synchrotron sources, better mechanical stability (tighter scattering geometry), and use of an area detector would enable more quantitative structural information for future phase dynamics studies exemplified by this work.« less
  • Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (I{sub spta}) wasmore » equal to 1050 W/cm{sup 2}. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.« less
  • Purpose: To develop a real-time target position estimation method using stereoscopic kilovoltage (kV)/megavoltage (MV) imaging and external respiratory monitoring, and to investigate the performance of a dynamic multileaf collimator tracking system using this method. Methods and Materials: The real-time three-dimensional internal target position estimation was established by creating a time-varying correlation model that connected the external respiratory signals with the internal target motion measured intermittently using kV/MV imaging. The method was integrated into a dynamic multileaf collimator tracking system. Tracking experiments were performed for 10 thoracic/abdominal traces. A three-dimensional motion platform carrying a gold marker and a separate one-dimensional motionmore » platform were used to reproduce the target and external respiratory motion, respectively. The target positions were detected by kV (1 Hz) and MV (5.2 Hz) imaging, and external respiratory motion was captured by an optical system (30 Hz). The beam-target alignment error was quantified as the positional difference between the target and circular beam center on the MV images acquired during tracking. The correlation model error was quantified by comparing a model estimate and measured target positions. Results: The root-mean-square errors in the beam-target alignment that had ranged from 3.1 to 7.6 mm without tracking were reduced to <1.5 mm with tracking, except during the model building period (6 s). The root-mean-square error in the correlation model was submillimeters in all directions. Conclusion: A novel real-time target position estimation method was developed and integrated into a dynamic multileaf collimator tracking system and demonstrated an average submillimeter geometric accuracy after initializing the internal/external correlation model. The method used hardware tools available on linear accelerators and therefore shows promise for clinical implementation.« less
  • The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less