skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time

Abstract

The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of (234U/238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting. Meltwater samples, measured from the outflow, were analyzed for (238U), (222Rn) and (234U/238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of (234U/238U) ranged from 1.003 to 1.040, with the highest (238U), (222Rn) and (234U/238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time duringmore » active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4]
  1. Univ. of Michigan, Ann Arbor, MI (United States); North Carolina State Univ., Raleigh, NC (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
  3. Univ. of Wyoming, Laramie, WY (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States); Univ. of California, Irvine, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1374356
Report Number(s):
LA-UR-17-23091
Journal ID: ISSN 0009-2541
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Chemical Geology
Additional Journal Information:
Journal Volume: 467; Journal ID: ISSN 0009-2541
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Subglacial hydrology; U-series isotopes; Athabasca Glacier; Uranium; Radon; Residence time

Citation Formats

Arendt, Carli A., Aciego, Sarah M., Sims, Kenneth W. W., and Aarons, Sarah M. Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time. United States: N. p., 2017. Web. doi:10.1016/j.chemgeo.2017.07.007.
Arendt, Carli A., Aciego, Sarah M., Sims, Kenneth W. W., & Aarons, Sarah M. Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time. United States. https://doi.org/10.1016/j.chemgeo.2017.07.007
Arendt, Carli A., Aciego, Sarah M., Sims, Kenneth W. W., and Aarons, Sarah M. 2017. "Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time". United States. https://doi.org/10.1016/j.chemgeo.2017.07.007. https://www.osti.gov/servlets/purl/1374356.
@article{osti_1374356,
title = {Seasonal progression of uranium series isotopes in subglacial meltwater: Implications for subglacial storage time},
author = {Arendt, Carli A. and Aciego, Sarah M. and Sims, Kenneth W. W. and Aarons, Sarah M.},
abstractNote = {The residence time of subglacial meltwater impacts aquifer recharge, nutrient production, and chemical signals that reflect underlying bedrock/substrate, but is inaccessible to direct observation. We report the seasonal evolution of subglacial meltwater chemistry from the 2011 melt season at the terminus of the Athabasca Glacier, Canada. We also measured major and trace analytes and U-series isotopes for twenty-nine bulk meltwater samples collected over the duration of the melt season. This dataset, which is the longest time-series record of (234U/238U) isotopes in a glacial meltwater system, provides insight into the hydrologic evolution of the subglacial system during active melting. Meltwater samples, measured from the outflow, were analyzed for (238U), (222Rn) and (234U/238U)activity, conductivity, alkalinity, pH and major cations. Subglacial meltwater varied in [238U] and (222Rn) from 23 to 832 ppt and 9 to 171 pCi/L, respectively. Activity ratios of (234U/238U) ranged from 1.003 to 1.040, with the highest (238U), (222Rn) and (234U/238U)activity values occurring in early May when delayed-flow basal meltwater composed a significant portion of the bulk melt. Furthemore, from the chemical evolution of the meltwater, we posit that the relative subglacial water residence times decrease over the course of the melt season. This decrease in qualitative residence time during active melt is consistent with prior field studies and model-predicted channel switching from a delayed, distributed network to a fast, channelized network flow. As such, our study provides support for linking U-series isotopes to storage lengths of meltwater beneath glacial systems as subglacial hydrologic networks evolve with increased melting and channel network efficiency.},
doi = {10.1016/j.chemgeo.2017.07.007},
url = {https://www.osti.gov/biblio/1374356}, journal = {Chemical Geology},
issn = {0009-2541},
number = ,
volume = 467,
place = {United States},
year = {Mon Jul 31 00:00:00 EDT 2017},
month = {Mon Jul 31 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share: