skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-Cost Bio-Based Carbon Fibers for High Temperature Processing

Abstract

GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical role in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was tomore » demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is a consumer of foreign-sourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.« less

Authors:
 [1];  [2]
  1. GrafTech International, Brooklyn Heights, OH (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
GrafTech International, Brooklyn Heights, OH (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office (EE-5A)
OSTI Identifier:
1373688
Report Number(s):
Final Technical Report
DOE Contract Number:  
EE0005779
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS

Citation Formats

Paul, Ryan Michael, and Naskar, Amit. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing. United States: N. p., 2017. Web. doi:10.2172/1373688.
Paul, Ryan Michael, & Naskar, Amit. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing. United States. doi:10.2172/1373688.
Paul, Ryan Michael, and Naskar, Amit. Thu . "Low-Cost Bio-Based Carbon Fibers for High Temperature Processing". United States. doi:10.2172/1373688. https://www.osti.gov/servlets/purl/1373688.
@article{osti_1373688,
title = {Low-Cost Bio-Based Carbon Fibers for High Temperature Processing},
author = {Paul, Ryan Michael and Naskar, Amit},
abstractNote = {GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical role in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is a consumer of foreign-sourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.},
doi = {10.2172/1373688},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Aug 03 00:00:00 EDT 2017},
month = {Thu Aug 03 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: