skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Covalent Surface Modifications of Carbon Nanotubes.

Abstract

A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.

Authors:
 [1];  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1373648
Report Number(s):
SAND-2017-7881
655666
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Pavia Sanders, Adriana, and O'Bryan, Greg. Covalent Surface Modifications of Carbon Nanotubes.. United States: N. p., 2017. Web. doi:10.2172/1373648.
Pavia Sanders, Adriana, & O'Bryan, Greg. Covalent Surface Modifications of Carbon Nanotubes.. United States. doi:10.2172/1373648.
Pavia Sanders, Adriana, and O'Bryan, Greg. Sat . "Covalent Surface Modifications of Carbon Nanotubes.". United States. doi:10.2172/1373648. https://www.osti.gov/servlets/purl/1373648.
@article{osti_1373648,
title = {Covalent Surface Modifications of Carbon Nanotubes.},
author = {Pavia Sanders, Adriana and O'Bryan, Greg},
abstractNote = {A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.},
doi = {10.2172/1373648},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000°C [2]. Onemore » of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.« less
  • Platinum was deposited by means of thermal evaporation in UHV conditions on a (0001) oriented zirconium single crystal surface. Before deposition, the zirconium substrate was superficially oxidized by exposure to oxygen at room temperature. The AES growth curves recorded at room temperature indicate that the platinum growth mechanism is Volmer-Weber type (3D clusters). Upon annealing, we observed by AES a reduction of the oxygen content of the surface and the concomitant interdiffusion of Pt and Zr. The angular dependence of the Pt/Zr AES ratio and the shape of the CO thermal desorption peak suggest that annealing causes the formation ofmore » a Pt/Zr binary surface compound.« less
  • Metallic zirconium was deposited on a single crystal Pt(100) surface by thermal evaporation in UHV conditions. The deposit was oxidized by exposure to oxygen immediately after deposition. Oxidized zirconium was found to grow on the platinum ace by the layer-by-layer mechanism. The adsorption of carbon monoxide on the surface was studied as a function of the zirconium coverage. The results show that oxidized zirconium forms a chemically inert layer which blocks the adsorptive sites of the underlying platinum substrate. The properties of the free Pt surface were unaffected by the presence of the oxidized zirconium layer.
  • On June 17--18, the author met with Dr. Mike Heben of the National Renewable Energy Laboratory (NREL) to discuss his research on the development of carbon nanotubes to be used for the storage of hydrogen on-board a vehicle. Dr. Heben has been working for the past several years on a project that will develop single walled nanotubes (SWNTs) composed of carbon for storage of hydrogen. Dr. Heben has spent much time trying to develop a method by which he could produce SWNTs in sufficient quantity, and then demonstrate the adsorption and desorption of hydrogen from these nanotubes at room temperature.more » While Dr. Heben was able to show hydrogen adsorption levels of up to 10% on a SWNT basis, generation of SWNTs from an arc-discharge was only about 0.05% of the total soot formation. Therefore, increasing SWNT concentration was a key consideration. Findings from the meeting with Dr. Heben are presented.« less
  • OAK 270 - Pyrolytic Mass Production of High Quality Carbon Nanotubes Using Advanced Catalysts Discovered by Integrated Catalysts Chips