skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

Abstract

Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or no alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1373000
Report Number(s):
PNNL-SA-122961
Journal ID: ISSN 0168-583X; 49141; 47580; KP1704020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms; Journal Volume: 404
Country of Publication:
United States
Language:
English
Subject:
ToF-SIMS; nanoscale imaging; glass corrosion; alteration layer; ISG Particles; Environmental Molecular Sciences Laboratory

Citation Formats

Zhang, Jiandong, Neeway, James J., Zhang, Yanyan, Ryan, Joseph V., Yuan, Wei, Wang, Tieshan, and Zhu, Zihua. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS. United States: N. p., 2017. Web. doi:10.1016/j.nimb.2017.01.053.
Zhang, Jiandong, Neeway, James J., Zhang, Yanyan, Ryan, Joseph V., Yuan, Wei, Wang, Tieshan, & Zhu, Zihua. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS. United States. doi:10.1016/j.nimb.2017.01.053.
Zhang, Jiandong, Neeway, James J., Zhang, Yanyan, Ryan, Joseph V., Yuan, Wei, Wang, Tieshan, and Zhu, Zihua. Tue . "Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS". United States. doi:10.1016/j.nimb.2017.01.053.
@article{osti_1373000,
title = {Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS},
author = {Zhang, Jiandong and Neeway, James J. and Zhang, Yanyan and Ryan, Joseph V. and Yuan, Wei and Wang, Tieshan and Zhu, Zihua},
abstractNote = {Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or no alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.},
doi = {10.1016/j.nimb.2017.01.053},
journal = {Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms},
number = ,
volume = 404,
place = {United States},
year = {Tue Aug 01 00:00:00 EDT 2017},
month = {Tue Aug 01 00:00:00 EDT 2017}
}
  • Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
  • It has been very difficult to use popular elemental imaging techniques to image Li and B distribution in glass samples with nanoscale resolution. In this study, atom probe tomography (APT), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and nanoscale secondary ion mass spectrometry (NanoSIMS) were used to image the distribution of Li and B in two representative glass samples. APT can provide three-dimensional Li and B imaging with very high spatial resolution (≤ 2 nm). In addition, absolute quantification of Li and B is possible, though room remains to improve accuracy. However, the major drawbacks of APT include limited field ofmore » view (normally ≤ 100 × 100 × 500 nm 3) and poor sample compatibility. As a comparison, ToF-SIMS and NanoSIMS are sample-friendly with flexible field of view (up to 500 × 500 μm 2 and image stitching is feasible); however, lateral resolution is limited to only about 100 nm. Therefore, SIMS and APT can be regarded as complementary techniques for nanoscale imaging Li and B in glass and other novel materials.« less
  • As part of a broader effort at understanding the chemistry of sea salt particles, we have performed time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis of individual sea salt particles deposited on a transmission electron microscopy (TEM) grid. Environmental scanning electron microscopy (ESEM) and TOF-SIMS analysis have, in conjunction with OH exposure studies, led to the discovery of an unrecognised buffering mechanism in the uptake and oxidation of SO2 in sea salt particles in the marine boundary layer. This chemistry may resolve several discrepancies in the atmospheric chemistry literature. Several challenges during the acquisition and interpretation of both imaging and depthmore » profiling data on specific particles on the TEM grid identified by the ESEM were overcome. A description of the analysis challenges and the solutions ultimately developed to them is presented here, along with an account of how the TOF-SIMS data were incorporated into the overall research effort. Several issues unique to the analysis of high aspect ratio particles are addressed.[1]« less
  • As part of a broader effort at understanding the chemistry of sea salt particles, we have performed time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis of individual sea salt particles deposited on a transmission electron microscopy (TEM) grid. Environmental scanning electron microscopy (ESEM) and TOF-SIMS analysis have, in conjunction with OH exposure studies, led to the discovery of an unrecognized buffering mechanism in the uptake and oxidation of SO2 in sea salt particles in the marine boundary layer. This chemistry may resolve several discrepancies in the atmospheric chemistry literature. Several challenges during the acquisition and interpretation of both imaging and depthmore » profiling data on specific particles on the TEM grid identified by the ESEM were overcome. A description of the analysis challenges and the solutions ultimately developed to them is presented here, along with an account of how the TOF-SIMS data were incorporated into the overall research effort. Several issues unique to the analysis of high aspect ratio particles are addressed.[1]« less
  • Changes in the oxidation state of an element can result in significant changes in the ionization efficiency and hence signal intensity during secondary ion mass spectrometry (SIMS) analysis; this is referred to as the SIMS matrix effect [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. The SIMS matrix effect complicates quantitative analysis. Quantification of SIMS data requires the determination of relative sensitivity factors (RSFs), which can be used to convert the as measured intensity into concentration units [Secondarymore » Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. In this manuscript, the authors report both: RSFs which were determined for quantification of B in Si and SiO{sub 2} matrices using a dual beam time of flight secondary ion mass spectrometry (ToF-SIMS) instrument and the protocol they are using to provide quantitative ToF-SIMS images and line scan traces. The authors also compare RSF values that were determined using oxygen and Ar ion beams for erosion, discuss the problems that can be encountered when bulk calibration samples are used to determine RSFs, and remind the reader that errors in molecular details of the matrix (density, volume, etc.) that are used to convert from atoms/cm{sup 3} to other concentration units will propagate into errors in the determined concentrations.« less