skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

Abstract

Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or no alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1373000
Report Number(s):
PNNL-SA-122961
Journal ID: ISSN 0168-583X; 49141; 47580; KP1704020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms; Journal Volume: 404
Country of Publication:
United States
Language:
English
Subject:
ToF-SIMS; nanoscale imaging; glass corrosion; alteration layer; ISG Particles; Environmental Molecular Sciences Laboratory

Citation Formats

Zhang, Jiandong, Neeway, James J., Zhang, Yanyan, Ryan, Joseph V., Yuan, Wei, Wang, Tieshan, and Zhu, Zihua. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS. United States: N. p., 2017. Web. doi:10.1016/j.nimb.2017.01.053.
Zhang, Jiandong, Neeway, James J., Zhang, Yanyan, Ryan, Joseph V., Yuan, Wei, Wang, Tieshan, & Zhu, Zihua. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS. United States. doi:10.1016/j.nimb.2017.01.053.
Zhang, Jiandong, Neeway, James J., Zhang, Yanyan, Ryan, Joseph V., Yuan, Wei, Wang, Tieshan, and Zhu, Zihua. 2017. "Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS". United States. doi:10.1016/j.nimb.2017.01.053.
@article{osti_1373000,
title = {Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS},
author = {Zhang, Jiandong and Neeway, James J. and Zhang, Yanyan and Ryan, Joseph V. and Yuan, Wei and Wang, Tieshan and Zhu, Zihua},
abstractNote = {Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or no alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.},
doi = {10.1016/j.nimb.2017.01.053},
journal = {Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms},
number = ,
volume = 404,
place = {United States},
year = 2017,
month = 8
}
  • Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less
  • It has been very difficult to use popular elemental imaging techniques to image Li and B distribution in glass samples with nanoscale resolution. In this study, atom probe tomography (APT), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and nanoscale secondary ion mass spectrometry (NanoSIMS) were used to image the distribution of Li and B in two representative glass samples. APT can provide three-dimensional Li and B imaging with very high spatial resolution (≤ 2 nm). In addition, absolute quantification of Li and B is possible, though room remains to improve accuracy. However, the major drawbacks of APT include limited field ofmore » view (normally ≤ 100 × 100 × 500 nm 3) and poor sample compatibility. As a comparison, ToF-SIMS and NanoSIMS are sample-friendly with flexible field of view (up to 500 × 500 μm 2 and image stitching is feasible); however, lateral resolution is limited to only about 100 nm. Therefore, SIMS and APT can be regarded as complementary techniques for nanoscale imaging Li and B in glass and other novel materials.« less
  • Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaignmore » in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.« less
  • Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during amore » field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.« less
  • As part of a broader effort at understanding the chemistry of sea salt particles, we have performed time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis of individual sea salt particles deposited on a transmission electron microscopy (TEM) grid. Environmental scanning electron microscopy (ESEM) and TOF-SIMS analysis have, in conjunction with OH exposure studies, led to the discovery of an unrecognised buffering mechanism in the uptake and oxidation of SO2 in sea salt particles in the marine boundary layer. This chemistry may resolve several discrepancies in the atmospheric chemistry literature. Several challenges during the acquisition and interpretation of both imaging and depthmore » profiling data on specific particles on the TEM grid identified by the ESEM were overcome. A description of the analysis challenges and the solutions ultimately developed to them is presented here, along with an account of how the TOF-SIMS data were incorporated into the overall research effort. Several issues unique to the analysis of high aspect ratio particles are addressed.[1]« less