skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Availability of Neutronics Benchmarks in the ICSBEP and IRPhEP Handbooks for Computational Tools Testing

Conference ·
OSTI ID:1372674

In the past several decades, numerous experiments have been performed worldwide to support reactor operations, measurements, design, and nuclear safety. Those experiments represent an extensive international investment in infrastructure, expertise, and cost, representing significantly valuable resources of data supporting past, current, and future research activities. Those valuable assets represent the basis for recording, development, and validation of our nuclear methods and integral nuclear data [1]. The loss of these experimental data, which has occurred all too much in the recent years, is tragic. The high cost to repeat many of these measurements can be prohibitive, if not impossible, to surmount. Two international projects were developed, and are under the direction of the Organisation for Co-operation and Development Nuclear Energy Agency (OECD NEA) to address the challenges of not just data preservation, but evaluation of the data to determine its merit for modern and future use. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was established to identify and verify comprehensive critical benchmark data sets; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data [2]. Similarly, the International Reactor Physics Experiment Evaluation Project (IRPhEP) was established to preserve integral reactor physics experimental data, including separate or special effects data for nuclear energy and technology applications [3]. Annually, contributors from around the world continue to collaborate in the evaluation and review of select benchmark experiments for preservation and dissemination. The extensively peer-reviewed integral benchmark data can then be utilized to support nuclear design and safety analysts to validate the analytical tools, methods, and data needed for next-generation reactor design, safety analysis requirements, and all other front- and back-end activities contributing to the overall nuclear fuel cycle where quality neutronics calculations are paramount.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
DE-AC07-05ID14517
OSTI ID:
1372674
Report Number(s):
INL/CON-16-40129
Resource Relation:
Conference: International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2017), Jeju, Korea, April 16–20, 2017
Country of Publication:
United States
Language:
English