skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Evaluation of Energy Storage Options for Nuclear Power

Abstract

Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-makingmore » context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.« less

Authors:
 [1];  [1];  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1372488
Report Number(s):
INL/EXT-17-42420
TRN: US1701973
DOE Contract Number:
AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; NUCLEAR POWER PLANTS; ENERGY STORAGE; ENERGY POLICY; NUCLEAR POWER; ECONOMICS; NUCLEAR ENERGY; POWER GENERATION; SOCIO-ECONOMIC FACTORS; energy grid; advanced nuclear power plants

Citation Formats

Coleman, Justin L., Bragg-Sitton, Shannon M., and Dufek, Eric J. An Evaluation of Energy Storage Options for Nuclear Power. United States: N. p., 2017. Web. doi:10.2172/1372488.
Coleman, Justin L., Bragg-Sitton, Shannon M., & Dufek, Eric J. An Evaluation of Energy Storage Options for Nuclear Power. United States. doi:10.2172/1372488.
Coleman, Justin L., Bragg-Sitton, Shannon M., and Dufek, Eric J. Thu . "An Evaluation of Energy Storage Options for Nuclear Power". United States. doi:10.2172/1372488. https://www.osti.gov/servlets/purl/1372488.
@article{osti_1372488,
title = {An Evaluation of Energy Storage Options for Nuclear Power},
author = {Coleman, Justin L. and Bragg-Sitton, Shannon M. and Dufek, Eric J.},
abstractNote = {Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.},
doi = {10.2172/1372488},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage formore » gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.« less
  • Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage formore » gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.« less
  • The impact of efficiency on the power system and how efficiency is affected by component types is discussed. Some ac and dc bus configurations are described along with prototype systems.
  • Demand-side energy efficiency (efficiency) represents a low-cost opportunity to reduce electricity consumption and demand and provide a wide range of non-energy benefits, including avoiding air pollution. Efficiency-related energy and non-energy impacts are determined and documented by implementing evaluation, measurement and verification (EM&V) systems. This technical brief describes efficiency EM&V coordination strategies that Western states can consider taking on together, outlines EM&V-related products that might be appropriate for multistate coordination, and identifies some implications of coordination. Coordinating efficiency EM&V activities can save both time and costs for state agencies and stakeholders engaged in efficiency activities and can be particularly beneficial formore » multiple states served by the same utility. First, the brief summarizes basic information on efficiency, its myriad potential benefits and EM&V for assessing those benefits. Second, the brief introduces the concept of multistate EM&V coordination in the context of assessing such benefits, including achievement of state and federal goals to reduce air pollutants.1 Next, the brief presents three coordination strategy options for efficiency EM&V: information clearinghouse/exchange, EM&V product development, and a regional energy efficiency tracking system platform. The brief then describes five regional EM&V products that could be developed on a multistate basis: EM&V reporting formats, database of consistent deemed electricity savings values, glossary of definitions and concepts, efficiency EM&V methodologies, and EM&V professional standards or accreditation processes. Finally, the brief discusses options for next steps that Western states can take to consider multistate coordination on efficiency EM&V. Appendices provide background information on efficiency and EM&V, as well as definitions and suggested resources on the covered topics. This brief is intended to inform state public utility commissions, boards for public and consumer-owned utilities, state energy offices and air agencies, and other organizations involved in discussions about the use of efficiency EM&V.« less
  • It is concluded that, in general, there should be no potential transient and dynamic stability problem due to the interaction between dispersed battery storage systems and the existing utility systems. With adjustments of converter control parameters, the system responses with and without batteries can be made essentially similar. Two converter system types were studied: the current-fed, line-commutated and the voltage-fed forced-commutated. (DLC)