skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vibrational Sum Frequency Generation Spectroscopy Microscope.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS) (SC-27)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the Symposium.
Country of Publication:
United States

Citation Formats

Valenton, Emmanuel. Vibrational Sum Frequency Generation Spectroscopy Microscope.. United States: N. p., 2016. Web.
Valenton, Emmanuel. Vibrational Sum Frequency Generation Spectroscopy Microscope.. United States.
Valenton, Emmanuel. Fri . "Vibrational Sum Frequency Generation Spectroscopy Microscope.". United States. doi:.
title = {Vibrational Sum Frequency Generation Spectroscopy Microscope.},
author = {Valenton, Emmanuel},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jul 01 00:00:00 EDT 2016},
month = {Fri Jul 01 00:00:00 EDT 2016}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Abstract not provided.
  • Instruments developed in our laboratory permit the atomic and molecular level study of NPs under reaction conditions (SFG, ambient pressure XPS and high pressure STM). These studies indicate continuous restructuring of the metal substrate and the adsorbate molecules, changes of oxidation states with NP size and surface composition variations of bimetallic NPs with changes of reactant molecules.
  • No abstract prepared.
  • Infrared-visible sum-frequency generation can be used for surface vibrational spectroscopy of molecules adsorbed at various interfaces. The highly surface-specific nature of the technique is demonstrated. 6 refs., 3 figs.
  • IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solidmore » interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of {omega}(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm{sup -1} spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin{sup -1} spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm{sup -1} of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C{sub 60} molecules. Preliminary SFG spectra of C{sub 60}/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied.« less