skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory

Abstract

The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.

Authors:
; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
DOE - BASIC ENERGY SCIENCES
OSTI Identifier:
1372251
Resource Type:
Journal Article
Journal Name:
Crystals
Additional Journal Information:
Journal Volume: 7; Journal Issue: 7; Journal ID: ISSN 2073-4352
Publisher:
MDPI
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; dihydroequilin; powder diffraction; Rietveld refinement; density functional theory

Citation Formats

Kaduk, James, Gindhart, Amy, and Blanton, Thomas. Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory. United States: N. p., 2017. Web. doi:10.3390/cryst7070218.
Kaduk, James, Gindhart, Amy, & Blanton, Thomas. Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory. United States. doi:10.3390/cryst7070218.
Kaduk, James, Gindhart, Amy, and Blanton, Thomas. Sat . "Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory". United States. doi:10.3390/cryst7070218.
@article{osti_1372251,
title = {Crystal Structure of 17α-Dihydroequilin, C18H22O2, from Synchrotron Powder Diffraction Data and Density Functional Theory},
author = {Kaduk, James and Gindhart, Amy and Blanton, Thomas},
abstractNote = {The crystal structure of 17α-dihydroequilin has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. 17α-dihydroequilin crystallizes in space group P212121 (#19) with a = 6.76849(1) Å, b = 8.96849(1) Å, c = 23.39031(5) Å, V = 1419.915(3) Å3, and Z = 4. Both hydroxyl groups form hydrogen bonds to each other, resulting in zig-zag chains along the b-axis. The powder diffraction pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ as the entry 00-066-1608.},
doi = {10.3390/cryst7070218},
journal = {Crystals},
issn = {2073-4352},
number = 7,
volume = 7,
place = {United States},
year = {2017},
month = {7}
}

Works referenced in this record:

Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures
journal, March 2008

  • Macrae, Clare F.; Bruno, Ian J.; Chisholm, James A.
  • Journal of Applied Crystallography, Vol. 41, Issue 2
  • DOI: 10.1107/S0021889807067908

A twelve-analyzer detector system for high-resolution powder diffraction
journal, July 2008

  • Lee, Peter L.; Shu, Deming; Ramanathan, Mohan
  • Journal of Synchrotron Radiation, Vol. 15, Issue 5
  • DOI: 10.1107/S0909049508018438

Retrieval of Crystallographically-Derived Molecular Geometry Information
journal, November 2004

  • Bruno, Ian J.; Cole, Jason C.; Kessler, Magnus
  • Journal of Chemical Information and Computer Sciences, Vol. 44, Issue 6
  • DOI: 10.1021/ci049780b

Hirshfeld surface analysis
journal, January 2009

  • Spackman, Mark A.; Jayatilaka, Dylan
  • CrystEngComm, Vol. 11, Issue 1
  • DOI: 10.1039/B818330A

Open Babel: An open chemical toolbox
journal, October 2011

  • O'Boyle, Noel M.; Banck, Michael; James, Craig A.
  • Journal of Cheminformatics, Vol. 3, Issue 1
  • DOI: 10.1186/1758-2946-3-33

Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al 2 O 3
journal, April 1987

  • Thompson, P.; Cox, D. E.; Hastings, J. B.
  • Journal of Applied Crystallography, Vol. 20, Issue 2
  • DOI: 10.1107/S0021889887087090

EXPGUI , a graphical user interface for GSAS
journal, April 2001


The Cambridge Structural Database
journal, April 2016

  • Groom, Colin R.; Bruno, Ian J.; Lightfoot, Matthew P.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 72, Issue 2, p. 171-179
  • DOI: 10.1107/S2052520616003954

C RYSTAL14 : A program for the ab initio investigation of crystalline solids
journal, March 2014

  • Dovesi, Roberto; Orlando, Roberto; Erba, Alessandro
  • International Journal of Quantum Chemistry, Vol. 114, Issue 19
  • DOI: 10.1002/qua.24658

A correction for powder diffraction peak asymmetry due to axial divergence
journal, December 1994

  • Finger, L. W.; Cox, D. E.; Jephcoat, A. P.
  • Journal of Applied Crystallography, Vol. 27, Issue 6
  • DOI: 10.1107/S0021889894004218

Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea
journal, December 1994

  • Gatti, C.; Saunders, V. R.; Roetti, C.
  • The Journal of Chemical Physics, Vol. 101, Issue 12
  • DOI: 10.1063/1.467882

Novel tools for visualizing and exploring intermolecular interactions in molecular crystals
journal, November 2004

  • McKinnon, Joshua J.; Spackman, Mark A.; Mitchell, Anthony S.
  • Acta Crystallographica Section B Structural Science, Vol. 60, Issue 6
  • DOI: 10.1107/S0108768104020300

FOX , `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction
journal, November 2002

  • Favre-Nicolin, Vincent; Černý, Radovan
  • Journal of Applied Crystallography, Vol. 35, Issue 6
  • DOI: 10.1107/S0021889802015236

CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals
journal, January 2005

  • Dovesi, Roberto; Orlando, Roberto; Civalleri, Bartolomeo
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.571.65065

New software for statistical analysis of Cambridge Structural Database data
journal, June 2011

  • Sykes, Richard A.; McCabe, Patrick; Allen, Frank H.
  • Journal of Applied Crystallography, Vol. 44, Issue 4
  • DOI: 10.1107/S0021889811014622

A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results
journal, August 2008

  • Wang, Jun; Toby, Brian H.; Lee, Peter L.
  • Review of Scientific Instruments, Vol. 79, Issue 8
  • DOI: 10.1063/1.2969260

Phenomenological model of anisotropic peak broadening in powder diffraction
journal, April 1999


Bonded-atom fragments for describing molecular charge densities
journal, January 1977


Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)
journal, December 2014

  • van de Streek, Jacco; Neumann, Marcus A.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 70, Issue 6, p. 1020-1032
  • DOI: 10.1107/S2052520614022902