skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long-Term Heating to Improve Receiver Performance

Abstract

The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overall power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in themore » hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.« less

Authors:
; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1372039
Report Number(s):
NREL/CP-5500-66772
DOE Contract Number:  
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems, 11-14 October 2016, Abu Dhabi, United Arab Emirates
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 47 OTHER INSTRUMENTATION; concentrating solar power; CSP; Acciona; heat transfer fluid; HTF; modeling

Citation Formats

Glatzmaier, Greg C., Cable, Robert, and Newmarker, Marc. Long-Term Heating to Improve Receiver Performance. United States: N. p., 2017. Web. doi:10.1063/1.4984330.
Glatzmaier, Greg C., Cable, Robert, & Newmarker, Marc. Long-Term Heating to Improve Receiver Performance. United States. doi:10.1063/1.4984330.
Glatzmaier, Greg C., Cable, Robert, and Newmarker, Marc. Tue . "Long-Term Heating to Improve Receiver Performance". United States. doi:10.1063/1.4984330.
@article{osti_1372039,
title = {Long-Term Heating to Improve Receiver Performance},
author = {Glatzmaier, Greg C. and Cable, Robert and Newmarker, Marc},
abstractNote = {The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overall power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.},
doi = {10.1063/1.4984330},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 27 00:00:00 EDT 2017},
month = {Tue Jun 27 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: