skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

Abstract

Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

Authors:
 [1];  [2];  [2]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Technological Institute for Superhard and Novel Carbon Materials (Russian Federation)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1371928
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
MRS Bulletin
Additional Journal Information:
Journal Volume: 42; Journal Issue: 06; Journal ID: ISSN 0883-7694
Publisher:
Materials Research Society
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; crystal; diamond; optics; x-rays

Citation Formats

Shvyd’ko, Yuri, Blank, Vladimir, and Terentyev, Sergey. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving. United States: N. p., 2017. Web. doi:10.1557/mrs.2017.119.
Shvyd’ko, Yuri, Blank, Vladimir, & Terentyev, Sergey. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving. United States. doi:10.1557/mrs.2017.119.
Shvyd’ko, Yuri, Blank, Vladimir, and Terentyev, Sergey. Fri . "Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving". United States. doi:10.1557/mrs.2017.119.
@article{osti_1371928,
title = {Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving},
author = {Shvyd’ko, Yuri and Blank, Vladimir and Terentyev, Sergey},
abstractNote = {Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.},
doi = {10.1557/mrs.2017.119},
journal = {MRS Bulletin},
number = 06,
volume = 42,
place = {United States},
year = {Fri Jun 09 00:00:00 EDT 2017},
month = {Fri Jun 09 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 9, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less
  • A first-order challenge facing developers of x-ray beam line optics at synchrotron sources lies in producing optics that faithfully deliver the brightness of the source, especially in the presence of adverse power loads. Once overcome, continued use of beam line optics in experiments often reveals a second-order challenge, that of preservation of the source brightness over time, especially as conditions such as the storage ring current change. This requires maintaining stability, with beam line optics, of the peaks, widths, and centroid positions of the various parameters that contribute to the brightness, the wavelength, position, and angle distributions of the deliveredmore » photon beam. Some ideas on the use of x-ray monochromators, mirrors, apertures, and position-sensitive monitors to sense and stabilize the brightness parameter distributions, as well as methods to avoid or minimize transients in the first place, are presented. Examples based on experiences at the X25 wiggler beam line at the National Synchrotron Light Source are given.« less
  • Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
  • The diamond anvil cell is a fundamental tool for investigating properties under extreme conditions. However, our knowledge of material behavior under high pressure has been limited by a lack of measurement capability in radial directions. In this study we introduce a gasketing technique based on a combination of Kapton, amorphous boron, and epoxy, that reliably solves this issue. We demonstrate how these gaskets allow precise imaging of stress, strain, and microscopic properties such as texture and lattice preferred orientations within the sample, in situ, up to pressures in the range of 65 GPa.
  • A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The 'Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared withSHADOWresults pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version ofSRWin one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the codemore » is considerably faster than the multi-electron version ofSRWand is therefore a useful tool for beamline design and optimization.« less