skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bianisotropic metamaterial

Abstract

The topology of the elements of a metamaterial can be engineered from its desired electromagnetic constitutive tensor using an inverse group theory method. Therefore, given a desired electromagnetic response and a generic metamaterial elemental design, group theory is applied to predict the various ways that the element can be arranged in three dimensions to produce the desired functionality. An optimizer can then be applied to an electromagnetic modeling tool to fine tune the values of the electromagnetic properties of the resulting metamaterial topology.

Inventors:
;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1371848
Patent Number(s):
9,709,720
Application Number:
14/594,998
Assignee:
National Technology & Engineering Solutions of Sandia, LLC SNL-A
DOE Contract Number:
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Jan 12
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

El-Kady, Ihab F., and Reinke, Charles M. Bianisotropic metamaterial. United States: N. p., 2017. Web.
El-Kady, Ihab F., & Reinke, Charles M. Bianisotropic metamaterial. United States.
El-Kady, Ihab F., and Reinke, Charles M. Tue . "Bianisotropic metamaterial". United States. doi:. https://www.osti.gov/servlets/purl/1371848.
@article{osti_1371848,
title = {Bianisotropic metamaterial},
author = {El-Kady, Ihab F. and Reinke, Charles M.},
abstractNote = {The topology of the elements of a metamaterial can be engineered from its desired electromagnetic constitutive tensor using an inverse group theory method. Therefore, given a desired electromagnetic response and a generic metamaterial elemental design, group theory is applied to predict the various ways that the element can be arranged in three dimensions to produce the desired functionality. An optimizer can then be applied to an electromagnetic modeling tool to fine tune the values of the electromagnetic properties of the resulting metamaterial topology.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 18 00:00:00 EDT 2017},
month = {Tue Jul 18 00:00:00 EDT 2017}
}

Patent:

Save / Share:
  • Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach.more » Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.« less
  • A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substratemore » electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.« less
  • A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overliesmore » the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.« less
  • Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.
  • Resonances can be tuned in dielectric resonators in order to construct single-resonator, negative-index metamaterials. For example, high-contrast inclusions in the form of metallic dipoles can be used to shift the first electric resonance down (in frequency) to the first magnetic resonance, or alternatively, air splits can be used to shift the first magnetic resonance up (in frequency) near the first electric resonance. Degenerate dielectric designs become especially useful in infrared- or visible-frequency applications where the resonator sizes associated with the lack of high-permittivity materials can become of sufficient size to enable propagation of higher-order lattice modes in the resulting medium.