skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetized Plasma Simulations (Current Status & Development Plan).

Abstract

Abstract not provided.

Authors:
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1371821
Report Number(s):
SAND2016-6611PE
644923
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the Presentation for Bill Rhodes.
Country of Publication:
United States
Language:
English

Citation Formats

Gardiner, Thomas Anthony. Magnetized Plasma Simulations (Current Status & Development Plan).. United States: N. p., 2016. Web.
Gardiner, Thomas Anthony. Magnetized Plasma Simulations (Current Status & Development Plan).. United States.
Gardiner, Thomas Anthony. 2016. "Magnetized Plasma Simulations (Current Status & Development Plan).". United States. doi:. https://www.osti.gov/servlets/purl/1371821.
@article{osti_1371821,
title = {Magnetized Plasma Simulations (Current Status & Development Plan).},
author = {Gardiner, Thomas Anthony},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Nowadays most magnetic lenses used to capture and to focus pions and muons utilize azimuthal magnetic fields generated by large axial currents, like horns or lithium rods (or even a Z-pinch at GSI). Capture and focusing angle is proportional to the product of the current and length of the lens. State-of-the-art for these lenses is no more than 750 kA and 70 cm. A meter long, multi-MA, magnetized axial discharges were generated by the early days of fusion. Lenses based of such devices can increase the capture angle of pions, e.g., by more than a factor of 2. Electron beammore » cooling is presently achieved in storage rings by having charged particles interact with a co-moving electron beam. In these devices, typical parameters are electron beam currents of about 1 A, an interaction length of about 1 meter, and interaction time of about 30 msec. Multi-MA electron beams can be used for single-pass final stage cooling in a number of machines. Calculations for some applications, as well as other advantages indicate that these schemes deserve further more serious consideration.« less
  • The Japan Nuclear Cycle Development Institute (JNC) conducted research and development projects on uranium exploration in Japan from 1956 to 1987. Several mine facilities, such as waste rock yards and a mill tailing pond, were retained around Ningyo-toge after the projects ended. Although there is no legal issue in the mine in accordance with related law and agreements at present, JNC has a notion that it is important to reduce the burden of waste management on future generations. Thus, the Ningyo-toge Environmental Engineering Center of JNC proposed a reclamation plan for these facilities with fundamental policy, an example of safetymore » analysis and timetables. The plan has mainly three phases: Phase I is the planning stage, and this paper corresponds to this: Phase II is the stage to perform various tests for safety analysis and site designing: Phase III is the stage to accomplish measures. Preliminarily safety analyses suggested that our supposed cover designs for both waste rock and m ill tailing are enough to keep dose limit of 1mSv/y at site boundaries. The plan is primarily based on the Japanese Mine Safety Law, also refers to ICRP recommendations, IAEA reports, measures implemented overseas, etc. because this is the first case in Japan. For the accomplishment of this plan, it is important to establish a close relationship with local communities and governments, and to maintain a policy of open-to-public.« less
  • The Reduced-Moderation Water Reactor (RMWR) adopts a tight-lattice core with triangular fuel rod arrangement and remarkably narrow gap spacing between rods. The criteria of boiling transition (BT) is one of most important subjects for such reactor but there has been no sufficient information from previous experimental or analytical studies about the effects of the gap spacing, grid spacer shape and so on for the BT characteristics. Thus, we start to develop a mechanistic BT model using advanced numerical simulation technology to resolve the geometry effects. In this paper, we describe the outline of newly developed 3-D two-phase flow simulation methodmore » and show some examples of numerical results. (authors)« less
  • Nine Department of Energy (DOE) sites reporting to the Albuquerque Office (AL) have mixed waste that is chemically hazardous and radioactive. The hazardous waste regulations require the chemical portion of mixed waste to be to be treated to certain standards. The total volume of low-level mixed waste at the nine sites is equivalent to 7,000 drums, with individual site volumes ranging from 1 gallon of waste at the Pinellas Plant to 4,500 drums at Los Alamos National Laboratory. Nearly all the sites have a diversity of wastes requiring a diversity of treatment processes. Treatment capacity does not exist for muchmore » of this waste, and it would be expensive for each site to build the diversity of treatment processes needed to treat its own wastes. DOE-AL assembled a team that developed the AL Mixed Waste Treatment Plan that uses the resources of the nine sites to treat the waste at the sites. Work on the plan started in October 1993, and the plan was finalized in March 1994. The plan uses commercial treatment, treatability studies, and mobile treatment units. The plan specifies treatment technologies that will be built as mobile treatment units to be moved from site to site. Mobile units include bench-top units for very small volumes and treatability studies, drum-size units that treat one drum per day, and skid-size units that handle multiple drum volumes. After the tools needed to treat the wastes were determined, the sites were assigned to provide part of the treatment capacity using their own resources and expertise. The sites are making progress on treatability studies, commercial treatment, and mobile treatment design and fabrication. To date, this is the only plan for treating waste that brings the resources of several DOE sites together to treat mixed waste. It is the only program actively planning to use mobile treatment coordinated between DOE sites.« less
  • Abstract not provided.