skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum

; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 3; Related Information: CHORUS Timestamp: 2017-07-18 22:10:24; Journal ID: ISSN 0031-9007
American Physical Society
Country of Publication:
United States

Citation Formats

Chatwin-Davies, Aidan, Kempf, Achim, and Martin, Robert T. W. Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.119.031301.
Chatwin-Davies, Aidan, Kempf, Achim, & Martin, Robert T. W. Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum. United States. doi:10.1103/PhysRevLett.119.031301.
Chatwin-Davies, Aidan, Kempf, Achim, and Martin, Robert T. W. 2017. "Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum". United States. doi:10.1103/PhysRevLett.119.031301.
title = {Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum},
author = {Chatwin-Davies, Aidan and Kempf, Achim and Martin, Robert T. W.},
abstractNote = {},
doi = {10.1103/PhysRevLett.119.031301},
journal = {Physical Review Letters},
number = 3,
volume = 119,
place = {United States},
year = 2017,
month = 7

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 18, 2018
Publisher's Accepted Manuscript

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Natural inflation is a good fit to all cosmic microwave background (CMB) data and may be the correct description of an early inflationary expansion of the Universe. The large angular scale CMB polarization experiment BICEP2 has announced a major discovery, which can be explained as the gravitational wave signature of inflation, at a level that matches predictions by natural inflation models. The natural inflation (NI) potential is theoretically exceptionally well motivated in that it is naturally flat due to shift symmetries, and in the simplest version takes the form V(φ) = Λ{sup 4} [1 ± cos(Nφ/f)]. A tensor-to-scalar ratio r > 0.1 as seen by BICEP2 requiresmore » the height of any inflationary potential to be comparable to the scale of grand unification and the width to be comparable to the Planck scale. The Cosine Natural Inflation model agrees with all cosmic microwave background measurements as long as f ≥ m{sub Pl} (where m{sub Pl} = 1.22 × 10{sup 19} GeV) and Λ ∼ m{sub GUT} ∼ 10{sup 16} GeV. This paper also discusses other variants of the natural inflation scenario: we show that axion monodromy with potential V∝ φ{sup 2/3} is inconsistent with the BICEP2 limits at the 95% confidence level, and low-scale inflation is strongly ruled out. Linear potentials V ∝ φ are inconsistent with the BICEP2 limit at the 95% confidence level, but are marginally consistent with a joint Planck/BICEP2 limit at 95%. We discuss the pseudo-Nambu Goldstone model proposed by Kinney and Mahanthappa as a concrete realization of low-scale inflation. While the low-scale limit of the model is inconsistent with the data, the large-field limit of the model is marginally consistent with BICEP2. All of the models considered predict negligible running of the scalar spectral index, and would be ruled out by a detection of running.« less
  • High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While severalmore » attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.« less
  • Small-scale features observed by Wilkinson Microwave Anisotropy Probe  ( WMAP ) and PLANCK in the frequency range of 22–90 GHz show a nearly flat spectrum, which meets with expectations that they originate in the early universe. However, free–free emission from electrons in small angular scale galactic sources that suffer beam dilution very closely mimic the observed spectrum in this frequency range. Fitting such a model to the PLANCK and WMAP data shows that the angular size required to fit the data is comparable to the angular width of associated H i filaments found in the Galactic Arecibo L-Band Feed Array-Hmore » isurvey data. Also, the temperature of the electrons is found to be in the range of 100–300 K. The phenomenon revealed by these data may contribute to a more precise characterization of the foreground masks required to interpret the cosmological aspect of PLANCK and WMAP data.« less
  • In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that accountmore » for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.« less
  • We present measurements of the cosmic microwave background (CMB) radiation temperature anisotropy in the multipole range 2000 < l < 3000 from the QUaD telescope's second and third observing seasons. After masking the brightest point sources our results are consistent with the primary {lambda}CDM expectation alone. We estimate the contribution of residual (un-masked) radio point sources using a model calibrated to our own bright source observations, and a full simulation of the source finding and masking procedure. Including this contribution slightly improves the {chi}{sup 2}. We also fit a standard Sunyaev-Zel'dovich (SZ) template to the bandpowers and see no strongmore » evidence of an SZ contribution, which is as expected for {sigma}{sub 8} {approx} 0.8.« less