skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

Abstract

Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.


Citation Formats

Han, Sang-Don, Kim, Soojeong, Li, Dongguo, Petkov, Valeri, Yoo, Hyun Deog, Phillips, Patrick J., Wang, Hao, Kim, Jae Jin, More, Karren L., Key, Baris, Klie, Robert F., Cabana, Jordi, Stamenkovic, Vojislav R., Fister, Timothy T., Markovic, Nenad M., Burrell, Anthony K., Tepavcevic, Sanja, and Vaughey, John T. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b00852.
Han, Sang-Don, Kim, Soojeong, Li, Dongguo, Petkov, Valeri, Yoo, Hyun Deog, Phillips, Patrick J., Wang, Hao, Kim, Jae Jin, More, Karren L., Key, Baris, Klie, Robert F., Cabana, Jordi, Stamenkovic, Vojislav R., Fister, Timothy T., Markovic, Nenad M., Burrell, Anthony K., Tepavcevic, Sanja, & Vaughey, John T. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery. United States. doi:10.1021/acs.chemmater.7b00852.
Han, Sang-Don, Kim, Soojeong, Li, Dongguo, Petkov, Valeri, Yoo, Hyun Deog, Phillips, Patrick J., Wang, Hao, Kim, Jae Jin, More, Karren L., Key, Baris, Klie, Robert F., Cabana, Jordi, Stamenkovic, Vojislav R., Fister, Timothy T., Markovic, Nenad M., Burrell, Anthony K., Tepavcevic, Sanja, and Vaughey, John T. Fri . "Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery". United States. doi:10.1021/acs.chemmater.7b00852.
@article{osti_1371698,
title = {Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery},
author = {Han, Sang-Don and Kim, Soojeong and Li, Dongguo and Petkov, Valeri and Yoo, Hyun Deog and Phillips, Patrick J. and Wang, Hao and Kim, Jae Jin and More, Karren L. and Key, Baris and Klie, Robert F. and Cabana, Jordi and Stamenkovic, Vojislav R. and Fister, Timothy T. and Markovic, Nenad M. and Burrell, Anthony K. and Tepavcevic, Sanja and Vaughey, John T.},
abstractNote = {Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.},
doi = {10.1021/acs.chemmater.7b00852},
journal = {Chemistry of Materials},
number = 11,
volume = 29,
place = {United States},
year = {Fri May 19 00:00:00 EDT 2017},
month = {Fri May 19 00:00:00 EDT 2017}
}