skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Glycolic acid physical properties and impurities assessment

Abstract

This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for itsmore » impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid solutions that are depleted of O2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. However, an irradiation test with a simulated SRAT product supernate containing glycolic acid in an oxygen depleted atmosphere found no evidence of polymerization.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1371696
Report Number(s):
SRNL-STI-2010-00314
DOE Contract Number:  
AC09-08SR22470
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; DWPF; sludge; glycolic

Citation Formats

Lambert, D. P., Pickenheim, B. R., Bibler, N. E., and Hay, M. S.. Glycolic acid physical properties and impurities assessment. United States: N. p., 2017. Web. doi:10.2172/1371696.
Lambert, D. P., Pickenheim, B. R., Bibler, N. E., & Hay, M. S.. Glycolic acid physical properties and impurities assessment. United States. doi:10.2172/1371696.
Lambert, D. P., Pickenheim, B. R., Bibler, N. E., and Hay, M. S.. Thu . "Glycolic acid physical properties and impurities assessment". United States. doi:10.2172/1371696. https://www.osti.gov/servlets/purl/1371696.
@article{osti_1371696,
title = {Glycolic acid physical properties and impurities assessment},
author = {Lambert, D. P. and Pickenheim, B. R. and Bibler, N. E. and Hay, M. S.},
abstractNote = {This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid solutions that are depleted of O2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. However, an irradiation test with a simulated SRAT product supernate containing glycolic acid in an oxygen depleted atmosphere found no evidence of polymerization.},
doi = {10.2172/1371696},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 08 00:00:00 EDT 2017},
month = {Thu Jun 08 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: