skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution

Abstract

Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl 3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl 3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl 3 concentration. This is attributed to the interactions between HCl and CrCl 3 speciation in solution that leads to HMF yield being maximized at moderate HCl concentrations for each CrCl 3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.

Authors:
 [1];  [1];  [2];  [1];  [1]
  1. Univ. of Delaware, Newark, DE (United States)
  2. OLI Systems Inc., Cedar Knolls, NJ (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Catalysis Center for Energy Innovation (CCEI)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1370906
Grant/Contract Number:  
SC0001004
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Green Chemistry
Additional Journal Information:
Journal Volume: 17; Journal Issue: 10; Related Information: CCEI partners with the University of Delaware (lead); Brookhaven National Laboratory; California Institute of Technology; Columbia University; University of Delaware; Lehigh University; University of Massachusetts, Amherst; Massachusetts Institute of Technology; University of Minnesota; Pacific Northwest National Laboratory; University of Pennsylvania; Princeton University; Rutgers University; Journal ID: ISSN 1463-9262
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (homogeneous); catalysis (heterogeneous); biofuels (including algae and biomass); bio-inspired; hydrogen and fuel cells; materials and chemistry by design; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Swift, T. Dallas, Nguyen, Hannah, Anderko, Andrzej, Nikolakis, Vladimiros, and Vlachos, Dionisios G. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution. United States: N. p., 2015. Web. doi:10.1039/c5gc01257k.
Swift, T. Dallas, Nguyen, Hannah, Anderko, Andrzej, Nikolakis, Vladimiros, & Vlachos, Dionisios G. Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution. United States. doi:10.1039/c5gc01257k.
Swift, T. Dallas, Nguyen, Hannah, Anderko, Andrzej, Nikolakis, Vladimiros, and Vlachos, Dionisios G. Sat . "Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution". United States. doi:10.1039/c5gc01257k. https://www.osti.gov/servlets/purl/1370906.
@article{osti_1370906,
title = {Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(iii) chloride and hydrochloric acid solution},
author = {Swift, T. Dallas and Nguyen, Hannah and Anderko, Andrzej and Nikolakis, Vladimiros and Vlachos, Dionisios G.},
abstractNote = {Here, a kinetic model for the tandem conversion of glucose to 5-hydroxymethylfurfural (HMF) through fructose in aqueous CrCl3–HCl solution was developed by analyzing experimental data. We show that the coupling of Lewis and Brønsted acids in a single pot overcomes equilibrium limitations of the glucose–fructose isomerization leading to high glucose conversions and identify conditions that maximize HMF yield. Adjusting the HCl/CrCl3 concentration has a more pronounced effect on HMF yield at constant glucose conversion than that of temperature or CrCl3 concentration. This is attributed to the interactions between HCl and CrCl3 speciation in solution that leads to HMF yield being maximized at moderate HCl concentrations for each CrCl3 concentration. This volcano-like behavior is accompanied with a change in the rate-limiting step from fructose dehydration to glucose isomerization as the concentration of the Brønsted acid increases. The maximum HMF yield in a single aqueous phase is only modest and appears independent of catalysts’ concentrations as long as they are appropriately balanced. However, it can be further maximized in a biphasic system. Our findings are consistent with recent studies in other tandem reactions catalyzed by different catalysts.},
doi = {10.1039/c5gc01257k},
journal = {Green Chemistry},
number = 10,
volume = 17,
place = {United States},
year = {Sat Jul 25 00:00:00 EDT 2015},
month = {Sat Jul 25 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

“One-Pot” Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite
journal, April 2011

  • Nikolla, Eranda; Román-Leshkov, Yuriy; Moliner, Manuel
  • ACS Catalysis, Vol. 1, Issue 4, p. 408-410
  • DOI: 10.1021/cs2000544

Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose
journal, May 2014

  • Bermejo-Deval, Ricardo; Orazov, Marat; Gounder, Rajamani
  • ACS Catalysis, Vol. 4, Issue 7, p. 2288-2297
  • DOI: 10.1021/cs500466j

Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
journal, June 2007

  • Román-Leshkov, Yuriy; Barrett, Christopher J.; Liu, Zhen Y.
  • Nature, Vol. 447, Issue 7147, p. 982-985
  • DOI: 10.1038/nature05923

Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and Brønsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent
journal, April 2012

  • Pagán-Torres, Yomaira J.; Wang, Tianfu; Gallo, Jean Marcel R.
  • ACS Catalysis, Vol. 2, Issue 6, p. 930-934
  • DOI: 10.1021/cs300192z

Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water
journal, March 2010

  • Moliner, M.; Roman-Leshkov, Y.; Davis, M. E.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 14, p. 6164-6168
  • DOI: 10.1073/pnas.1002358107

Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose
journal, June 2006

  • Roman-Leshkov, Yuriy; Chheda, Juben N.; Dumesic, James A.
  • Science, Vol. 312, Issue 5782, p. 1933-1937
  • DOI: 10.1126/science.1126337

Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water
journal, October 2010

  • Román-Leshkov, Yuriy; Moliner, Manuel; Labinger, Jay A.
  • Angewandte Chemie International Edition, Vol. 49, Issue 47, p. 8954-8957
  • DOI: 10.1002/anie.201004689