skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Project Report for Award ER65581

Abstract

The attached final project report describes contributions of Montana State University (MSU) to the project "Bridging land-surface fluxes and aerosol concentrations to triggering convective rainfall" (PI: Fuentes).

Authors:
ORCiD logo [1]
  1. Montana State Univ., Bozeman, MT (United States)
Publication Date:
Research Org.:
Montana State Univ., Bozeman, MT (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1369453
Report Number(s):
DOE-MSU-0011097
ER65581
DOE Contract Number:
SC0011097
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; eddy covariance; flux synthesis; surface-atmosphere exchange; biogenic volatile organic compounds

Citation Formats

Stoy, Paul C. Final Project Report for Award ER65581. United States: N. p., 2017. Web. doi:10.2172/1369453.
Stoy, Paul C. Final Project Report for Award ER65581. United States. doi:10.2172/1369453.
Stoy, Paul C. 2017. "Final Project Report for Award ER65581". United States. doi:10.2172/1369453. https://www.osti.gov/servlets/purl/1369453.
@article{osti_1369453,
title = {Final Project Report for Award ER65581},
author = {Stoy, Paul C.},
abstractNote = {The attached final project report describes contributions of Montana State University (MSU) to the project "Bridging land-surface fluxes and aerosol concentrations to triggering convective rainfall" (PI: Fuentes).},
doi = {10.2172/1369453},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 7
}

Technical Report:

Save / Share:
  • As the flood of data associated with leading edge computational science continues to escalate, the challenge of supporting the distributed collaborations that are now characteristic of it becomes increasingly daunting. The chief obstacles to progress on this front lie less in the synchronous elements of collaboration, which have been reasonably well addressed by new global high performance networks, than in the asynchronous elements, where appropriate shared storage infrastructure seems to be lacking. The recent report from the Department of Energy on the emerging 'data management challenge' captures the multidimensional nature of this problem succinctly: Data inevitably needs to be buffered,more » for periods ranging from seconds to weeks, in order to be controlled as it moves through the distributed and collaborative research process. To meet the diverse and changing set of application needs that different research communities have, large amounts of non-archival storage are required for transitory buffering, and it needs to be widely dispersed, easily available, and configured to maximize flexibility of use. In today's grid fabric, however, massive storage is mostly concentrated in data centers, available only to those with user accounts and membership in the appropriate virtual organizations, allocated as if its usage were non-transitory, and encapsulated behind legacy interfaces that inhibit the flexibility of use and scheduling. This situation severely restricts the ability of application communities to access and schedule usable storage where and when they need to in order to make their workflow more productive. (p.69f) One possible strategy to deal with this problem lies in creating a storage infrastructure that can be universally shared because it provides only the most generic of asynchronous services. Different user communities then define higher level services as necessary to meet their needs. One model of such a service is a Storage Network, analogous to those used within computation centers, but designed to operate on a global scale. Building on a basic storage service that is as primitive as possible, such a Global Storage Network would define a framework within which higher level services can be created. If this framework enabled a variety of more specialized middleware and supported a wide array of applications, then interoperability and collaboration could occur based on that common framework. The research in Logistical Networking (LN) carried out under the DOE's SciDAC program tested the value of this approach within the context of several SciDAC application communities. Below we briefly describe the basic design of the LN storage network and some of the results that the Logistical Networking community has achieved.« less
  • Surface spectral reflectance (albedo) is a fundamental variable affecting the transfer of solar radiation and the Earth’s climate. It determines the proportion of solar energy absorbed by the surface and reflected back to the atmosphere. The International Panel on Climate Change (IPCC) identified surface albedo among key factors influencing climate radiative forcing. Accurate knowledge of surface reflective properties is important for advancing weather forecasting and climate change impact studies. It is also important for determining radiative impact and acceptable levels of greenhouse gases in the atmosphere, which makes this work strongly linked to major scientific objectives of the Climate Changemore » Research Division (CCRD) and Atmospheric Radiation Measurement (ARM) Program. Most significant accomplishments of eth project are listed below. I) Surface albedo/BRDF datasets from 1995 to the end of 2004 have been produced. They were made available to the ARM community and other interested users through the CCRS public ftp site ftp://ftp.ccrs.nrcan.gc.ca/ad/CCRS_ARM/ and ARM IOP data archive under “PI data Trishchenko”. II) Surface albedo properties over the ARM SGP area have been described for 10-year period. Comparison with ECMWF data product showed some deficiencies in the ECMWF surface scheme, such as missing some seasonal variability and no dependence on sky-conditions which biases surface energy budget and has some influence of the diurnal cycle of upward radiation and atmospheric absorption. III) Four surface albedo Intensive Observation Period (IOP) Field Campaigns have been conducted for every season (August, 2002, May 2003, February 2004 and October 2004). Data have been prepared, documented and transferred to ARM IOP archive. Nine peer-reviewed journal papers and 26 conference papers have been published.« less
  • It is generally conceded that the costs associated with current practices for the mooring, anchoring, or foundation systems of Marine HydroKinetic (MHK) and Deepwater Floating Wind systems are a disproportionate portion of the total cost of an installed system. Reducing the cost of the mooring and anchoring components for MHK systems can contribute substantially to reducing the levelized cost of electricity (LCOE). Micropile anchors can reduce the LCOE both directly, because the anchors, associated mooring hardware and installation costs are less than conventional anchor and mooring systems, but also because micropile anchors require less extensive geotechnical surveys for confident designmore » and proper implementation of an anchor or foundation system. This report presents the results of the development of critical elements of grouted marine micropile anchor (MMA) technology for application to MHK energy conversion systems and other ocean engineering applications that require fixing equipment to the seafloor. Specifically, this project identified grout formulations and developed designs for grout dispensing systems suitable for use in a seawater environment as a critical development need for successful implementation of practical MMA systems. The project conducted a thorough review of available information on the use of cement-based grouts in seawater. Based on this review and data available from commercial sources, the project selected a range of grout formulations for testing as part of a micropile system. The project also reviewed instrumentation for measuring grout density, pressure and flow rate, and integrated an instrumentation system suitable for use with micropile installation. The grout formulations and instrumentation system were tested successfully and demonstrated the suitability of MMA technology for implementation into anchor systems for MHK and other marine renewable energy systems. In addition, this project developed conceptual designs for micropile anchor systems and the associated drilling and grouting systems to demonstrate the feasibility and practicality of micropile anchors. This report presents several conceptual system designs for different applications. This project has concluded that grouted marine micropile anchor technology is practical and very attractive technically and financially for marine renewable energy applications. This technology is considered to be at a Technology Readiness Level 5.« less
  • Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadosemore » zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the proposed bioremediation technique at a contaminated site located within the 100-N area of the Hanford, Washington site **Assessing the role of nitrification on the persistence of precipitated calcite by modifying primers for identification of the amoA gene region of various ammonia oxidizing bacteria (AOB) for characterizing AOB in the field« less