skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scrambling and thermalization in a diffusive quantum many-body system

Abstract

Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. The slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.

Authors:
 [1]; ORCiD logo [2];  [3];  [4]
  1. Technical Univ. of Munich, Garching (Germany); Harvard Univ., Cambridge, MA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
  3. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  4. Technical Univ. of Munich, Garching (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1369417
Grant/Contract Number:
AC02-76SF00515; KN 1254/1-1; 291763
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
New Journal of Physics
Additional Journal Information:
Journal Volume: 19; Journal Issue: 6; Journal ID: ISSN 1367-2630
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; scrambling of quantum information; out-of-time ordered correlation functions; incoherent transport; many-body interferometry

Citation Formats

Bohrdt, A., Mendl, C. B., Endres, M., and Knap, M. Scrambling and thermalization in a diffusive quantum many-body system. United States: N. p., 2017. Web. doi:10.1088/1367-2630/aa719b.
Bohrdt, A., Mendl, C. B., Endres, M., & Knap, M. Scrambling and thermalization in a diffusive quantum many-body system. United States. doi:10.1088/1367-2630/aa719b.
Bohrdt, A., Mendl, C. B., Endres, M., and Knap, M. Fri . "Scrambling and thermalization in a diffusive quantum many-body system". United States. doi:10.1088/1367-2630/aa719b. https://www.osti.gov/servlets/purl/1369417.
@article{osti_1369417,
title = {Scrambling and thermalization in a diffusive quantum many-body system},
author = {Bohrdt, A. and Mendl, C. B. and Endres, M. and Knap, M.},
abstractNote = {Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. The slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.},
doi = {10.1088/1367-2630/aa719b},
journal = {New Journal of Physics},
number = 6,
volume = 19,
place = {United States},
year = {Fri Jun 02 00:00:00 EDT 2017},
month = {Fri Jun 02 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15works
Citation information provided by
Web of Science

Save / Share:
  • We present an overview of our recent numerical and analytical results on the dynamics of isolated interacting quantum systems that are taken far from equilibrium by an abrupt perturbation. The studies are carried out on one-dimensional systems of spins-1/2, which are paradigmatic models of many-body quantum systems. Our results show the role of the interplay between the initial state and the post-perturbation Hamiltonian in the relaxation process, the size of the fluctuations after equilibration, and the viability of thermalization.
  • Cited by 7
  • The intention of this work is twofold: first, to present a most simple system capable of simulating the intrinsic bosonic Josephson effect with photons and, second, to study various outcomes deriving from inherent or external decoherence. A qubit induces an effective coupling between two externally pumped cavity modes. Without cavity losses and in the dispersive regime, intrinsic Josephson oscillations of photons between the two modes occurs. In this case, contrary to regular Markovian decoherence, the qubit purity shows a Gaussian decay and recurrence of its coherence. Due to intrinsic nonlinearities, both the Josephson oscillations as well as the qubit propertiesmore » display a rich collapse-revival structure, where, however, the complexity of the qubit evolution is in some sense stronger. The qubit as a meter of the photon dynamics is considered, and it is shown that qubit dephasing, originating, for example, from nondemolition measurements, results in an exponential destruction of the oscillations which manifests the collectiveness of the Josephson effect. Nonselective qubit measurements, on the other hand, render a Zeno effect seen in a slowing down of the Josephson oscillations. Contrary to dephasing, cavity dissipation results in a Gaussian decay of the scaled Josephson oscillations. Finally, following Ponomarev et al. [Phys. Rev. Lett. 106, 010405 (2011)], we analyze aspects of thermalization. In particular, despite similarities with the generic model studied by Ponomarev et al., our system does not seem to thermalize.« less
  • We study an interacting one-dimensional quantum lattice gas of massive fermions on a ring with [ital L] lattice sites. The ring is threaded by a magnetic flux corresponding to a twist in boundary conditions. We compute the periodicity of the ground state under an adiabatically increasing flux and the associated Berry's phase occurring in this process. The model has a second-order phase transition line which coincides with a line where the Berry phase changes nonanalytically.
  • In a previous paper the two-particle distribution function and one-particle density matrix for the quantum many-body system with the 1/r[sup 2] pair potential have been expressed as limiting cases of Selberg correlation integrals. Recurrence equations are derived which allow rapid evaluation of these multidimensional integrals. The exact results for the two-particle distribution are compared with the harmonic approximation. 9 refs., 2 figs.