skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On-the-fly data assessment for high-throughput x-ray diffraction measurements

Abstract

Investment in brighter sources and larger and faster detectors has accelerated the speed of data acquisition at national user facilities. The accelerated data acquisition offers many opportunities for the discovery of new materials, but it also presents a daunting challenge. The rate of data acquisition far exceeds the current speed of data quality assessment, resulting in less than optimal data and data coverage, which in extreme cases forces recollection of data. Herein, we show how this challenge can be addressed through the development of an approach that makes routine data assessment automatic and instantaneous. By extracting and visualizing customized attributes in real time, data quality and coverage, as well as other scientifically relevant information contained in large data sets, is highlighted. Deployment of such an approach not only improves the quality of data but also helps optimize the usage of expensive characterization resources by prioritizing measurements of the highest scientific impact. We anticipate our approach will become a starting point for a sophisticated decision-tree that optimizes data quality and maximizes scientific content in real time through automation. Finally, with these efforts to integrate more automation in data collection and analysis, we can truly take advantage of the accelerating speed ofmore » data acquisition.« less

Authors:
 [1];  [2];  [1];  [2]; ORCiD logo [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1369408
Grant/Contract Number:
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ACS Combinatorial Science
Additional Journal Information:
Journal Volume: 19; Journal Issue: 6; Journal ID: ISSN 2156-8952
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; attribute extraction; data quality assessment; high-throughput; on-the-fly; X-ray diffraction

Citation Formats

Ren, Fang, Pandolfi, Ronald, Van Campen, Douglas, Hexemer, Alexander, and Mehta, Apurva. On-the-fly data assessment for high-throughput x-ray diffraction measurements. United States: N. p., 2017. Web. doi:10.1021/acscombsci.7b00015.
Ren, Fang, Pandolfi, Ronald, Van Campen, Douglas, Hexemer, Alexander, & Mehta, Apurva. On-the-fly data assessment for high-throughput x-ray diffraction measurements. United States. doi:10.1021/acscombsci.7b00015.
Ren, Fang, Pandolfi, Ronald, Van Campen, Douglas, Hexemer, Alexander, and Mehta, Apurva. Tue . "On-the-fly data assessment for high-throughput x-ray diffraction measurements". United States. doi:10.1021/acscombsci.7b00015. https://www.osti.gov/servlets/purl/1369408.
@article{osti_1369408,
title = {On-the-fly data assessment for high-throughput x-ray diffraction measurements},
author = {Ren, Fang and Pandolfi, Ronald and Van Campen, Douglas and Hexemer, Alexander and Mehta, Apurva},
abstractNote = {Investment in brighter sources and larger and faster detectors has accelerated the speed of data acquisition at national user facilities. The accelerated data acquisition offers many opportunities for the discovery of new materials, but it also presents a daunting challenge. The rate of data acquisition far exceeds the current speed of data quality assessment, resulting in less than optimal data and data coverage, which in extreme cases forces recollection of data. Herein, we show how this challenge can be addressed through the development of an approach that makes routine data assessment automatic and instantaneous. By extracting and visualizing customized attributes in real time, data quality and coverage, as well as other scientifically relevant information contained in large data sets, is highlighted. Deployment of such an approach not only improves the quality of data but also helps optimize the usage of expensive characterization resources by prioritizing measurements of the highest scientific impact. We anticipate our approach will become a starting point for a sophisticated decision-tree that optimizes data quality and maximizes scientific content in real time through automation. Finally, with these efforts to integrate more automation in data collection and analysis, we can truly take advantage of the accelerating speed of data acquisition.},
doi = {10.1021/acscombsci.7b00015},
journal = {ACS Combinatorial Science},
number = 6,
volume = 19,
place = {United States},
year = {Tue May 02 00:00:00 EDT 2017},
month = {Tue May 02 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiplemore » crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers a promising opportunity for full automation of the X-ray structure-determination process.« less
  • The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffractionmore » data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers a promising opportunity for full automation of the X-ray structure-determination process.« less
  • High-throughput crystallography is an important tool in materials research, particularly for the rapid assessment of structure-property relationships. We present a technique for simultaneous acquisition of diffraction images and fluorescence spectra on a continuous composition spread thin film using a 60 keV x-ray source. Subsequent noninteractive data processing provides maps of the diffraction profiles, thin film fiber texture, and composition. Even for highly textured films, our diffraction technique provides detection of diffraction from each family of Bragg reflections, which affords direct comparison of the measured profiles with powder patterns of known phases. These techniques are important for high throughput combinatorial studiesmore » as they provide structure and composition maps which may be correlated with performance trends within an inorganic library.« less
  • A new large radius imaging plate diffraction camera for high-resolution and high-throughput synchrotron x-ray powder diffraction by means of multiple exposures has been developed for an insertion device beamline of SPring-8, Japan. The new imaging plate camera consists of a large radius cylindrical shape imaging plate cassette that is 400 mm in length and 954.9 mm in cylinder radius. The cassette is designed to be mounted on the 2{theta} arm of the diffractometer of BL15XU in SPring-8. One imaging plate covers 24 deg. and several times of exposure changing the 2{theta}-setting angle is necessary to obtain whole powder diffraction datamore » up to a high angle region. One pixel of the imaging plate corresponds to 0.003 deg. in 2{theta} when the readout pixel size is 50 {mu}m squares. Separately collected data are translated to 2{theta}-intensity format and are connected by comparing the peak and background intensity included in the overlapped area. The exposure time is less than 120 s for most samples and the readout time is about 3 min; thus, the total measurement time for one powder diffraction pattern is less than 20 min. The measurement time is the same order as the continuous 2{theta}-scanning method of the third generation synchrotron powder diffractometer. The angular resolution of the new imaging plate camera was evaluated by comparing the full width at half maximum of the 111 reflection of NBS-Si. The observed angular resolution is not so high as a powder diffractometer with a Si or a Ge analyzer monochromator in the third generation synchrotron facility but higher than a powder diffractometer with a Ge analyzer monochromator at a bending magnet beamline of the second generation synchrotron. The Rietveld analysis of NBS-CeO{sub 2} was successfully carried out with the data taken by the new imaging plate camera.« less
  • The x-ray diffraction technique has been used to characterize crystalline phases in mixtures ever since its discovery.