skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of MERRA-2 in the National Solar Radiation Database and Beyond

Abstract

The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at the surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.

Authors:
; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1369385
Report Number(s):
NREL/PR-5D00-68686
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at the NASA Goddard MERRA-2 Applications Workshop, 19 June 2017, Greenbelt, Maryland
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 97 MATHEMATICS AND COMPUTING; NSRDB; National Solar Radiation Database; solar radiation; MERRA-2; satellite measurements

Citation Formats

Sengupta, Manajit, Lopez, Anthony, and Habte, Aron. Use of MERRA-2 in the National Solar Radiation Database and Beyond. United States: N. p., 2017. Web.
Sengupta, Manajit, Lopez, Anthony, & Habte, Aron. Use of MERRA-2 in the National Solar Radiation Database and Beyond. United States.
Sengupta, Manajit, Lopez, Anthony, and Habte, Aron. 2017. "Use of MERRA-2 in the National Solar Radiation Database and Beyond". United States. doi:. https://www.osti.gov/servlets/purl/1369385.
@article{osti_1369385,
title = {Use of MERRA-2 in the National Solar Radiation Database and Beyond},
author = {Sengupta, Manajit and Lopez, Anthony and Habte, Aron},
abstractNote = {The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at the surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 7
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • No abstract prepared.
  • No abstract prepared.
  • No abstract prepared.
  • The National Renewable Energy Laboratory (NREL), University of Wisconsin, and National Oceanic Atmospheric Administration are collaborating to investigate the integration of the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) products into future versions of NREL's 4-km by 4-km gridded National Solar Radiation Database (NSRDB). This paper describes a method to select an improved clear-sky model that could replace the current SASRAB global horizontal irradiance and direct normal irradiances reported during clear-sky conditions.
  • Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite andmore » creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The AOD and PWV, temperature, and pressure data are also combined with the MMAC model to simulate solar radiation under clear-sky conditions. The current NSRDB update is based on a 4-km x 4-km resolution at a 30-minute time interval, which has a higher temporal and spatial resolution. This paper demonstrates the evaluation of the data set using ground-measured data and detailed evaluation statistics. The result of the comparison shows a good correlation to the NSRDB data set. Further, an outline of the new version of the NSRDB and future plans for enhancement and improvement are provided.« less