skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

Abstract

Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [4];  [1];  [5];  [6];  [7];  [1];  [4];  [1];  [8]; ORCiD logo [7];  [9];  [1];  [10]; ORCiD logo [1];  [5];  [1] more »;  [11];  [1];  [2];  [12] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Norwegian Univ. of Science and Technology, Trondheim (Norway)
  3. Univ. degli Studi di Trieste, Trieste (Italy); Technical Univ. of Denmark, Lyngby (Denmark)
  4. Univ. of Gothenburg, Gothenburg (Sweden)
  5. Univ. of Connecticut, Storrs, CT (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Lemont, IL (United States); Northwestern Univ., Evanston, IL (United States)
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
  8. Ecole Polytechnique Federal de Lausanne, Lausanne (Switzerland)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); RIKEN, Saitama (Japan)
  10. Uppsala Univ., Uppsala (Sweden)
  11. Elettra-Sincrotrone Trieste, Trieste (Italy)
  12. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. Potsdam, Potsdam (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1369334
Grant/Contract Number:
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; atomic and molecular interactions with photons; chemical physics

Citation Formats

Wolf, T. J. A., Myhre, R. H., Cryan, J. P., Coriani, S., Squibb, R. J., Battistoni, A., Berrah, N., Bostedt, C., Bucksbaum, P., Coslovich, G., Feifel, R., Gaffney, K. J., Grilj, J., Martinez, T. J., Miyabe, S., Moeller, S. P., Mucke, M., Natan, A., Obaid, R., Osipov, T., Plekan, O., Wang, S., Koch, Henrik, and Guhr, M. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption. United States: N. p., 2017. Web. doi:10.1038/s41467-017-00069-7.
Wolf, T. J. A., Myhre, R. H., Cryan, J. P., Coriani, S., Squibb, R. J., Battistoni, A., Berrah, N., Bostedt, C., Bucksbaum, P., Coslovich, G., Feifel, R., Gaffney, K. J., Grilj, J., Martinez, T. J., Miyabe, S., Moeller, S. P., Mucke, M., Natan, A., Obaid, R., Osipov, T., Plekan, O., Wang, S., Koch, Henrik, & Guhr, M. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption. United States. doi:10.1038/s41467-017-00069-7.
Wolf, T. J. A., Myhre, R. H., Cryan, J. P., Coriani, S., Squibb, R. J., Battistoni, A., Berrah, N., Bostedt, C., Bucksbaum, P., Coslovich, G., Feifel, R., Gaffney, K. J., Grilj, J., Martinez, T. J., Miyabe, S., Moeller, S. P., Mucke, M., Natan, A., Obaid, R., Osipov, T., Plekan, O., Wang, S., Koch, Henrik, and Guhr, M. Thu . "Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption". United States. doi:10.1038/s41467-017-00069-7. https://www.osti.gov/servlets/purl/1369334.
@article{osti_1369334,
title = {Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption},
author = {Wolf, T. J. A. and Myhre, R. H. and Cryan, J. P. and Coriani, S. and Squibb, R. J. and Battistoni, A. and Berrah, N. and Bostedt, C. and Bucksbaum, P. and Coslovich, G. and Feifel, R. and Gaffney, K. J. and Grilj, J. and Martinez, T. J. and Miyabe, S. and Moeller, S. P. and Mucke, M. and Natan, A. and Obaid, R. and Osipov, T. and Plekan, O. and Wang, S. and Koch, Henrik and Guhr, M.},
abstractNote = {Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.},
doi = {10.1038/s41467-017-00069-7},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {Thu Jun 22 00:00:00 EDT 2017},
month = {Thu Jun 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4works
Citation information provided by
Web of Science

Save / Share:
  • Intense nπ* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the nπ* transition and the higher energy of the {sup 3}ππ* state than the {sup 3}nπ* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} → S{sub 1} pathwaymore » in the electroluminescent process.« less
  • An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lowermore » than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.« less
  • Nickel superoxide dismutase (NiSOD) is a recently discovered metalloenzyme that catalyzes the disproportionation of O2* into O2 and H2O2. In its reduced state, the mononuclear NiII ion is ligated by two cis-cysteinate sulfurs, an amine nitrogen (from the protein N-terminus), and an amide nitrogen (from the peptide backbone). Unlike many small molecule and metallopeptide-based NiN2S2 complexes, S-based oxygenation is not observed in NiSOD. Herein we explore the spectroscopic properties of a series of three NiIIN2S2 complexes (bisamine-ligated (bmmp-dmed)NiII, amine/amide-ligated (NiII(BEAAM)), and bisamide-ligated (NiII(emi))2) with varying amine/amide ligation to determine the origin of the dioxygen stability of NiSOD. Ni L-edge X-raymore » absorption spectroscopy (XAS) demonstrates that there is a progression in ligand-field strength with (bmmp-dmed)NiII having the weakest ligand field and (NiII(emi)2) having the strongest ligand field. Furthermore, these Ni L-edge XAS studies also show that all three complexes are highly covalent with (NiII(BEEAM)) having the highest degree of metal-ligand covalency of the three compounds studied. S K-edge XAS also shows a high degree of NiS covalency in all three complexes. The electronic structures of the three complexes were probed using both hybrid-DFT and multiconfigurational SORCI calculations. These calculations demonstrate that the nucleophilic Ni(3d)/S()* HOMO of these NiN2S2 complexes progressively decreases in energy as the amide-nitrogens are replaced with amine nitrogens. This decrease in energy of the HOMO deactivates the Ni-center toward O2 reactivity. Thus, the NiS bond is protected from S-based oxygenation explaining the enhanced stability of the NiSOD active-site toward oxygenation by dioxygen.« less
  • We present observations of the Ni K-edge resonant inelastic X-ray scattering (RIXS) in NiOx thin films showing unipolar resistive switching (RS). The RIXS spectra of RS NiOx thin films can be described in terms of crystal field (dd) and charge transfer (CT) excitations. We found distorted dd excitations in the films' pristine state before electroforming, and identical excitations for high and low resistance states after electroforming. This suggests that the RS property of NiOx thin film is related to defects in pristine NiOx films, and RS occurs in local nanosized spots too small to be detected by RIXS.
  • Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less