skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services

Abstract

With increasing penetrations of wind generation on electric grids, wind power plants (WPPs) are encouraged to provide frequency ancillary services (FAS); however, it is a challenge to ensure that variable wind generation can reliably provide these ancillary services. This paper proposes using a battery energy storage system (BESS) to ensure the WPPs' commitment to FAS. This method also focuses on reducing the BESS's size and extending its lifetime. In this paper, a state-machine-based coordinated control strategy is developed to utilize a BESS to support the obliged FAS of a WPP (including both primary and secondary frequency control). This method takes into account the operational constraints of the WPP (e.g., real-time reserve) and the BESS (e.g., state of charge [SOC], charge and discharge rate) to provide reliable FAS. Meanwhile, an adaptive SOC-feedback control is designed to maintain SOC at the optimal value as much as possible and thus reduce the size and extend the lifetime of the BESS. In conclusion, the effectiveness of the control strategy is validated with an innovative, multi-area, interconnected power system simulation platform that can mimic realistic power systems operation and control by simulating real-time economic dispatch, regulating reserve scheduling, multi-area automatic generation control, and generators' dynamicmore » response.« less

Authors:
 [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Electricity Delivery and Energy Reliability
OSTI Identifier:
1369126
Report Number(s):
NREL/JA-5D00-67812
Journal ID: ISSN 1949-3029
Grant/Contract Number:
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
IEEE Transactions on Sustainable Energy
Additional Journal Information:
Journal Volume: 8; Journal Issue: 3; Journal ID: ISSN 1949-3029
Publisher:
IEEE
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; primary frequency control; secondary frequency control; BESS; wind power integration; frequency ancillary service; economic dispatch; state-machine control

Citation Formats

Tan, Jin, and Zhang, Yingchen. Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services. United States: N. p., 2017. Web. doi:10.1109/TSTE.2017.2663334.
Tan, Jin, & Zhang, Yingchen. Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services. United States. doi:10.1109/TSTE.2017.2663334.
Tan, Jin, and Zhang, Yingchen. Thu . "Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services". United States. doi:10.1109/TSTE.2017.2663334. https://www.osti.gov/servlets/purl/1369126.
@article{osti_1369126,
title = {Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services},
author = {Tan, Jin and Zhang, Yingchen},
abstractNote = {With increasing penetrations of wind generation on electric grids, wind power plants (WPPs) are encouraged to provide frequency ancillary services (FAS); however, it is a challenge to ensure that variable wind generation can reliably provide these ancillary services. This paper proposes using a battery energy storage system (BESS) to ensure the WPPs' commitment to FAS. This method also focuses on reducing the BESS's size and extending its lifetime. In this paper, a state-machine-based coordinated control strategy is developed to utilize a BESS to support the obliged FAS of a WPP (including both primary and secondary frequency control). This method takes into account the operational constraints of the WPP (e.g., real-time reserve) and the BESS (e.g., state of charge [SOC], charge and discharge rate) to provide reliable FAS. Meanwhile, an adaptive SOC-feedback control is designed to maintain SOC at the optimal value as much as possible and thus reduce the size and extend the lifetime of the BESS. In conclusion, the effectiveness of the control strategy is validated with an innovative, multi-area, interconnected power system simulation platform that can mimic realistic power systems operation and control by simulating real-time economic dispatch, regulating reserve scheduling, multi-area automatic generation control, and generators' dynamic response.},
doi = {10.1109/TSTE.2017.2663334},
journal = {IEEE Transactions on Sustainable Energy},
number = 3,
volume = 8,
place = {United States},
year = {Thu Feb 02 00:00:00 EST 2017},
month = {Thu Feb 02 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less
  • This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic controlmore » level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.« less
  • This report describes methodologies to determine the fixed costs for a steam cycle generating unit to participate in Reactive Supply and Voltage Control (RS-VC), Regulation and Frequency Response (RFR), and Operating Reserve-Spinning (ORS) services. It is intended for use by a Generator of electricity who is planning to offer these ancillary services in a competitive market. The methodology is based on common steam power plant engineering and economic principles. Reactive supply and voltage control provides reactive supply through changes to generator reactive output to maintain acceptable transmission system voltages and facilitate electricity transfers and provides the ability to continually adjustmore » transmission system voltage in response to system changes. Regulation and frequency response service include all rapid load changes whether their purpose is to meet the instantaneous load demand, to balance control area supply resources with load, or to maintain frequency. Spinning reserve is provided by generating units that are on-line and loaded at less than maximum output. They are available to serve load immediately in an unexpected contingency such as an unplanned outage of a generating unit.« less
  • With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
  • This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less