skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: development and offline assessment for use in an aerosol–climate model

Abstract

We describe an emulator of a detailed cloud parcel model which has been trained to assess droplet nucleation from a complex, multimodal aerosol size distribution simulated by a global aerosol–climate model. The emulator is constructed using a sensitivity analysis approach (polynomial chaos expansion) which reproduces the behavior of the targeted parcel model across the full range of aerosol properties and meteorology simulated by the parent climate model. An iterative technique using aerosol fields sampled from a global model is used to identify the critical aerosol size distribution parameters necessary for accurately predicting activation. Across the large parameter space used to train them, the emulators estimate cloud droplet number concentration (CDNC) with a mean relative error of 9.2% for aerosol populations without giant cloud condensation nuclei (CCN) and 6.9% when including them. Versus a parcel model driven by those same aerosol fields, the best-performing emulator has a mean relative error of 4.6%, which is comparable with two commonly used activation schemes also evaluated here (which have mean relative errors of 2.9 and 6.7%, respectively). We identify the potential for regional biases in modeled CDNC, particularly in oceanic regimes, where our best-performing emulator tends to overpredict by 7%, whereas the reference activationmore » schemes range in mean relative error from -3 to 7%. The emulators which include the effects of giant CCN are more accurate in continental regimes (mean relative error of 0.3%) but strongly overestimate CDNC in oceanic regimes by up to 22%, particularly in the Southern Ocean. Finally, the biases in CDNC resulting from the subjective choice of activation scheme could potentially influence the magnitude of the indirect effect diagnosed from the model incorporating it.« less

Authors:
ORCiD logo [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Earth, Atmospheric, and Planetary Sciences
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1368370
Grant/Contract Number:
FG02-94ER61937; 1122374; AGS-1339264
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Geoscientific Model Development (Online)
Additional Journal Information:
Journal Name: Geoscientific Model Development (Online); Journal Volume: 10; Journal Issue: 4; Journal ID: ISSN 1991-9603
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Rothenberg, Daniel, and Wang, Chien. An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: development and offline assessment for use in an aerosol–climate model. United States: N. p., 2017. Web. doi:10.5194/gmd-10-1817-2017.
Rothenberg, Daniel, & Wang, Chien. An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: development and offline assessment for use in an aerosol–climate model. United States. doi:10.5194/gmd-10-1817-2017.
Rothenberg, Daniel, and Wang, Chien. 2017. "An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: development and offline assessment for use in an aerosol–climate model". United States. doi:10.5194/gmd-10-1817-2017. https://www.osti.gov/servlets/purl/1368370.
@article{osti_1368370,
title = {An aerosol activation metamodel of v1.2.0 of the pyrcel cloud parcel model: development and offline assessment for use in an aerosol–climate model},
author = {Rothenberg, Daniel and Wang, Chien},
abstractNote = {We describe an emulator of a detailed cloud parcel model which has been trained to assess droplet nucleation from a complex, multimodal aerosol size distribution simulated by a global aerosol–climate model. The emulator is constructed using a sensitivity analysis approach (polynomial chaos expansion) which reproduces the behavior of the targeted parcel model across the full range of aerosol properties and meteorology simulated by the parent climate model. An iterative technique using aerosol fields sampled from a global model is used to identify the critical aerosol size distribution parameters necessary for accurately predicting activation. Across the large parameter space used to train them, the emulators estimate cloud droplet number concentration (CDNC) with a mean relative error of 9.2% for aerosol populations without giant cloud condensation nuclei (CCN) and 6.9% when including them. Versus a parcel model driven by those same aerosol fields, the best-performing emulator has a mean relative error of 4.6%, which is comparable with two commonly used activation schemes also evaluated here (which have mean relative errors of 2.9 and 6.7%, respectively). We identify the potential for regional biases in modeled CDNC, particularly in oceanic regimes, where our best-performing emulator tends to overpredict by 7%, whereas the reference activation schemes range in mean relative error from -3 to 7%. The emulators which include the effects of giant CCN are more accurate in continental regimes (mean relative error of 0.3%) but strongly overestimate CDNC in oceanic regimes by up to 22%, particularly in the Southern Ocean. Finally, the biases in CDNC resulting from the subjective choice of activation scheme could potentially influence the magnitude of the indirect effect diagnosed from the model incorporating it.},
doi = {10.5194/gmd-10-1817-2017},
journal = {Geoscientific Model Development (Online)},
number = 4,
volume = 10,
place = {United States},
year = 2017,
month = 4
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly representsmore » convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.« less
  • The Community Atmosphere Model Version 5 is run at horizontal grid spacing of 2, 1, 0.5, and 0.25 degrees, with the meteorology nudged towards the Year Of Tropical Convection analysis, and cloud simulators and the collocated A-Train satellite observations are used to explore the resolution dependence of aerosol-cloud interactions. The higher-resolution model produces results that agree better with observations, showing an increase of susceptibility of cloud droplet size, indicating a stronger first aerosol indirect forcing (AIF), and a decrease of susceptibility of precipitation probability, suggesting a weaker second AIF. The resolution sensitivities of AIF are attributed to those of dropletmore » nucleation and precipitation parameterizations. The annual average AIF in the northern hemisphere mid-latitudes (where most anthropogenic emissions occur) in the 0.25° model is reduced by about 1 W m⁻² (-30%) compared to the 2° model, leading to a 0.26 W m⁻² reduction (-15%) in the global annual average AIF.« less
  • The Community Atmosphere Model Version 5 is run at horizontal grid spacing of 2, 1, 0.5, and 0.25°, with the meteorology nudged toward the Year Of Tropical Convection analysis, and cloud simulators and the collocated A-Train satellite observations are used to explore the resolution dependence of aerosol-cloud interactions. The higher-resolution model produces results that agree better with observations, showing an increase of susceptibility of cloud droplet size, indicating a stronger first aerosol indirect forcing (AIF), and a decrease of susceptibility of precipitation probability, suggesting a weaker second AIF. The resolution sensitivities of AIF are attributed to those of droplet nucleationmore » and precipitation parameterizations. The annual average AIF in the Northern Hemisphere midlatitudes (where most anthropogenic emissions occur) in the 0.25° model is reduced by about 1 W m-2 (-30%) compared to the 2° model, leading to a 0.26 W m-2 reduction (-15%) in the global annual average AIF.« less
  • Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less
  • In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. Themore » relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.« less