skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of the Triassic Newark Basin of New York and New Jersey for geologic storage of carbon dioxide

Technical Report ·
DOI:https://doi.org/10.2172/1368193· OSTI ID:1368193
 [1]
  1. Geostock Sandia, LLC, Houston, TX (United States)

The Newark Basin is a Triassic-aged rift basin underlying densely populated, industrialized sections of New York, New Jersey and Pennsylvania. The Basin is an elongate half-graben encompassing an area of more than 7,510 square-kilometers (2,900 square-miles), and could represent a key storage component for commercial scale management of carbon dioxide emissions via geologic sequestration. The project team first acquired published reports, surface and subsurface maps, and seismic data, which formed the basis for a three-dimensional model framework for the northern end of the Basin incorporating stratigraphic, hydrologic, and water quality data. Field investigations included drilling, coring, and logging of two stratigraphic test borings in Clarkstown, NY (Exit 14 Tandem Lot Well No. 1), drilled to a depth of 2,099 meters (6,885 feet); and Palisades, NY (Lamont-Doherty Earth Observatory Test Well No. 4) drilled to a depth of 549 meters (1,802 feet). Two two-dimensional seismic reflection data lines arrayed perpendicularly were acquired by Schlumberger/WesternGeco to help characterize the structure and stratigraphy and as part of pre-drilling field screening activities for the deep stratigraphic borehole. A total of 47 meters (155 feet) of continuous whole core was recovered from the Tandem Lot boring from depths of 1,393 meters (4,570 feet) to 1,486 meters (4,877 feet). Twenty-five horizontal rotary cores were collected in mudstones and sandstones in the surface casing hole and fifty-two cores were taken in various lithologies in the deep borehole. Rotary core plugs were analyzed by Weatherford Laboratories for routine and advanced testing. Rotary core plug trim end thin sections were evaluated by the New York State Museum for mineralogical analysis and porosity estimation. Using core samples, Lawrence Berkley National Laboratory designed and completed laboratory experiments and numerical modeling analyses to characterize the dissolution and reaction of carbon dioxide with formation brine and minerals, and resulting effects on injection rate, pressure, effective storage volume, and carbon dioxide migration within a prospective sandstone reservoir. $$Three potential porous and permeable sandstone units were identified in the Passaic Formation at the New York State Thruway Exit 14 location. Potential Flow Unit 1, at a depth of 643 meters (2,110 feet) to 751 meters (2,465 feet); Potential Flow Unit 2 at a depth of 853 meters (2,798 feet) to 1,000 meters (3,280 feet); and Potential Flow Unit 3, at a depth of 1,114 meters (3,655 feet) to 1,294 meters (4,250 feet). Reactive transport simulations of interactions between carbon dioxide, brine and formation minerals were carried out to evaluate changes in formation water chemistry, mineral precipitation and dissolution reactions, and any potential resulting effects on formation permeability. The experimental and modeling analyses suggest that mineral precipitation and dissolution reactions (within the target formation) are not expected to lead to significant changes to the underground hydrologic system over time frames (~30 years) typically relevant for carbon dioxide injection operations. Key findings of this basin characterization study include an estimate of carbon dioxide storage capacity in the Newark Basin. Assuming an average porosity of twelve percent and an aquifer volume of 6.1E+12 meters3, calculated ranges of likely storage capacity range from 1.9 – 20.2 gigatonnes under high temperature (low carbon dioxide density) conditions; and 2.9 – 30.2 gigatonnes under low temperature (low carbon dioxide density) conditions. Intra-basin faulting, geometry of the Palisades Sill, and the presence of altered meta-sediments above and below the Sill, increase potential compartmentalization within the basin. A structural/stratigraphic trap type may occur where porous/permeable sediments are cross-cut by the Palisades Sill. Potential injection intervals are present within the Stockton Formation of the Newark Basin. Additional porous/permeable intervals may be present within sandstones of the Passaic Formation, increasing projected storage capacity. Deeper wedges of strata are likely present in the deeper portions of the basin in southern New York and into northern New Jersey. Abundant mudstones are present in the Passaic, Lockatong, and Stockton Formations. These intervals have the requisite petrophysical properties to form effective primary and secondary containment intervals to industrial-scale sequestration of carbon dioxide in the Newark Basin. Hydro-thermally altered meta-sediments in the region immediately surrounding the top and base of the Palisades Sill is devoid of porosity/permeability and forms an additional effective lateral/vertical sealing cap rock.

Research Organization:
Geostock Sandia, LLC, Houston, TX (United States)
Sponsoring Organization:
USDOE Office of Fossil Energy (FE)
DOE Contract Number:
FE0002352
OSTI ID:
1368193
Report Number(s):
DOE-Sandia-0002352
Country of Publication:
United States
Language:
English

Similar Records

Interpreted reflection seismic events near the North Central Oil Corporation Well, Newark Basin, Bucks County, Pennsylvania
Conference · Sun Aug 01 00:00:00 EDT 1993 · AAPG Bulletin (American Association of Petroleum Geologists); (United States) · OSTI ID:1368193

sRecovery Act: Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage
Technical Report · Tue Feb 10 00:00:00 EST 2015 · OSTI ID:1368193

Mudstone Baffles and Barriers in Lower Cretaceous Strata at a Proposed CO2 Storage Hub in Kemper County, Mississippi, United States
Journal Article · Fri Jun 24 00:00:00 EDT 2022 · Frontiers in Energy Research · OSTI ID:1368193

Related Subjects