skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

Abstract

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

Authors:
;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
MicroBooNE
OSTI Identifier:
1367903
Report Number(s):
FERMILAB-PUB-17-163-ND; arXiv:1705.07341
1600848
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Journal Article
Resource Relation:
Journal Name: TBD
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Acciarri, R., and et al. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC. United States: N. p., 2017. Web.
Acciarri, R., & et al. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC. United States.
Acciarri, R., and et al. Sat . "Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC". United States. doi:. https://www.osti.gov/servlets/purl/1367903.
@article{osti_1367903,
title = {Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC},
author = {Acciarri, R. and et al.},
abstractNote = {The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.},
doi = {},
journal = {TBD},
number = ,
volume = ,
place = {United States},
year = {Sat May 20 00:00:00 EDT 2017},
month = {Sat May 20 00:00:00 EDT 2017}
}