skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Luminaires for Advanced Lighting in Education

Abstract

Evolving education methods and greater use of technology in the classroom are dictating the need to rethink facility designs, including classroom lighting. Advances in LED-based lighting technology have created the possibility of lighting systems that are not only cost effective and energy efficient, but also color-tunable and as durable as other facility infrastructures (a 20-30 year life expectancy). Thus, there is the opportunity that the modern lighting system can be used by educators as a tool in their teaching strategy. To meet this need, RTI International and Finelite, Inc. teamed to develop and test the Next Generation Integrated Classroom Lighting System (NICLS). The NICLS technology incorporates a high performance, color-tunable light engine into new luminaire designs (e.g., pendant, direct-indirect, downlight, troffers) that are acceptable for use in classrooms. During this project, we successfully demonstrated that the NICLS technology achieves exceptional performance and exceeds all DOE goals for the classroom of the future, including: Luminous efficacy value for NICLS luminaires in excess of 125 lpw at all CCT values; TWL range of 2,700 K to 6,500 K while maintaining a CRI of 82 or higher at all values; Capability for full-range dimming (100% to 1%) at all CCT values with flickermore » levels below industry guidelines; Performance of the lighting system in a classroom mock-up, incorporating daylight and occupancy sensing to provide automatic control of lighting zones to further reduce energy consumption; Rated lifetime on the system exceeding 50,000 hours with a lumen maintenance of at least 85% at 50,000 hours; and Teacher-focused UI located at the front of the classroom to operate the lighting system. A smartphone-based UI is also available to accommodate teacher movement in the classroom. A critical element of developing this technology is designing the user interface to be compatible with modern teaching methods, including increased use of icons and colors and intuitive appearance. The design of the NICLS technology and the user interface was modified with assistance from focus groups consisting of more than 80 teachers and educational professionals total. The focus groups were held in a full-sized classroom that served as a technology demonstration site for the NICLS. The NICLS technology is an advanced lighting system for educational settings that meets or exceeds all DOE photometric, electrical, and reliability goals for the COF. The NICLS technology has been demonstrated at the classroom level, and the feedback from the dozens of teachers and educational professionals who visited the demonstration site has been overwhelmingly positive. NICLS provides a state-of-the-art lighting environment that adjusts the lighting conditions—both color and illuminance levels—to the needs of students and teachers for the task at hand. Early research has suggested that such lighting conditions will improve not only teacher effectiveness but also a student’s ability to concentrate on learning activities.« less

Authors:
 [1]
  1. RTI International, Research Triangle Park, NC (United States)
Publication Date:
Research Org.:
RTI International, Research Triangle Park, NC (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)
OSTI Identifier:
1367149
Report Number(s):
DOE-RTI-07081-1
DOE Contract Number:
EE0007081
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 42 ENGINEERING

Citation Formats

Davis, J. Lynn. Luminaires for Advanced Lighting in Education. United States: N. p., 2017. Web. doi:10.2172/1367149.
Davis, J. Lynn. Luminaires for Advanced Lighting in Education. United States. doi:10.2172/1367149.
Davis, J. Lynn. Thu . "Luminaires for Advanced Lighting in Education". United States. doi:10.2172/1367149. https://www.osti.gov/servlets/purl/1367149.
@article{osti_1367149,
title = {Luminaires for Advanced Lighting in Education},
author = {Davis, J. Lynn},
abstractNote = {Evolving education methods and greater use of technology in the classroom are dictating the need to rethink facility designs, including classroom lighting. Advances in LED-based lighting technology have created the possibility of lighting systems that are not only cost effective and energy efficient, but also color-tunable and as durable as other facility infrastructures (a 20-30 year life expectancy). Thus, there is the opportunity that the modern lighting system can be used by educators as a tool in their teaching strategy. To meet this need, RTI International and Finelite, Inc. teamed to develop and test the Next Generation Integrated Classroom Lighting System (NICLS). The NICLS technology incorporates a high performance, color-tunable light engine into new luminaire designs (e.g., pendant, direct-indirect, downlight, troffers) that are acceptable for use in classrooms. During this project, we successfully demonstrated that the NICLS technology achieves exceptional performance and exceeds all DOE goals for the classroom of the future, including: Luminous efficacy value for NICLS luminaires in excess of 125 lpw at all CCT values; TWL range of 2,700 K to 6,500 K while maintaining a CRI of 82 or higher at all values; Capability for full-range dimming (100% to 1%) at all CCT values with flicker levels below industry guidelines; Performance of the lighting system in a classroom mock-up, incorporating daylight and occupancy sensing to provide automatic control of lighting zones to further reduce energy consumption; Rated lifetime on the system exceeding 50,000 hours with a lumen maintenance of at least 85% at 50,000 hours; and Teacher-focused UI located at the front of the classroom to operate the lighting system. A smartphone-based UI is also available to accommodate teacher movement in the classroom. A critical element of developing this technology is designing the user interface to be compatible with modern teaching methods, including increased use of icons and colors and intuitive appearance. The design of the NICLS technology and the user interface was modified with assistance from focus groups consisting of more than 80 teachers and educational professionals total. The focus groups were held in a full-sized classroom that served as a technology demonstration site for the NICLS. The NICLS technology is an advanced lighting system for educational settings that meets or exceeds all DOE photometric, electrical, and reliability goals for the COF. The NICLS technology has been demonstrated at the classroom level, and the feedback from the dozens of teachers and educational professionals who visited the demonstration site has been overwhelmingly positive. NICLS provides a state-of-the-art lighting environment that adjusts the lighting conditions—both color and illuminance levels—to the needs of students and teachers for the task at hand. Early research has suggested that such lighting conditions will improve not only teacher effectiveness but also a student’s ability to concentrate on learning activities.},
doi = {10.2172/1367149},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 29 00:00:00 EDT 2017},
month = {Thu Jun 29 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • The primary objectives of this project was to develop and validate reliability models and accelerated stress testing (AST) methodologies for predicting the lifetime of integrated SSL luminaires. This study examined the likely failure modes for SSL luminaires including abrupt failure, excessive lumen depreciation, unacceptable color shifts, and increased power consumption. Data on the relative distribution of these failure modes were acquired through extensive accelerated stress tests and combined with industry data and other source of information on LED lighting. This data was compiled and utilized to build models of the aging behavior of key luminaire optical and electrical components.
  • The Reports make it easier to purchase environmentally responsible products. Each Report includes a review of the environmental and financial impacts of the category; an overview of the category; definitions of technical terms; criteria for the selection of environmentally responsible products from a life-cycle perspective; rationales for the criteria; lists of recommended brands and models that meet the criteria; and contact phone numbers for the manufacturers of these products. Separate Reports cover high-intensity discharge luminaires, linear fluorescent luminaires, and energy-efficient downlight luminaires.
  • This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developedmore » in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.« less
  • The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college studentmore » electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.« less