skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods of introducing nucleic acids into cellular DNA

Abstract

A method of introducing a nucleic acid sequence into a cell is provided where the cell has impaired or inhibited or disrupted DnaG primase activity or impaired or inhibited or disrupted DnaB helicase activity, or larger or increased gaps or distance between Okazaki fragments or lowered or reduced frequency of Okazaki fragment initiation, or the cell has increased single stranded DNA (ssDNA) on the lagging strand of the replication fork including transforming the cell through recombination with a nucleic acid oligomer.

Inventors:
; ; ;
Publication Date:
Research Org.:
President and Fellows of Harvard College, Cambridge, MA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1366739
Patent Number(s):
9,688,994
Application Number:
13/954,351
Assignee:
President and Fellows of Harvard College CHO
DOE Contract Number:
FG02-02ER63445
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Jul 30
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Lajoie, Marc J., Gregg, Christopher J., Mosberg, Joshua A., and Church, George M.. Methods of introducing nucleic acids into cellular DNA. United States: N. p., 2017. Web.
Lajoie, Marc J., Gregg, Christopher J., Mosberg, Joshua A., & Church, George M.. Methods of introducing nucleic acids into cellular DNA. United States.
Lajoie, Marc J., Gregg, Christopher J., Mosberg, Joshua A., and Church, George M.. Tue . "Methods of introducing nucleic acids into cellular DNA". United States. doi:. https://www.osti.gov/servlets/purl/1366739.
@article{osti_1366739,
title = {Methods of introducing nucleic acids into cellular DNA},
author = {Lajoie, Marc J. and Gregg, Christopher J. and Mosberg, Joshua A. and Church, George M.},
abstractNote = {A method of introducing a nucleic acid sequence into a cell is provided where the cell has impaired or inhibited or disrupted DnaG primase activity or impaired or inhibited or disrupted DnaB helicase activity, or larger or increased gaps or distance between Okazaki fragments or lowered or reduced frequency of Okazaki fragment initiation, or the cell has increased single stranded DNA (ssDNA) on the lagging strand of the replication fork including transforming the cell through recombination with a nucleic acid oligomer.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 27 00:00:00 EDT 2017},
month = {Tue Jun 27 00:00:00 EDT 2017}
}

Patent:

Save / Share:
  • The present invention relates to automated methods of introducing multiple nucleic acid sequences into one or more target cells.
  • A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.
  • The present invention provides an isolated polypeptide exhibiting substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the polypeptide does not have the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. The invention further provides an isolated nucleic acid molecule containing a nucleotide sequence encoding substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the nucleotide sequence does not encode the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. Also provided herein is a method of inhibiting differentiation of hematopoietic progenitor cellsmore » by contacting the progenitor cells with an isolated JAGGED polypeptide, or active fragment thereof. The invention additionally provides a method of diagnosing Alagille Syndrome in an individual. The method consists of detecting an Alagille Syndrome disease-associated mutation linked to a JAGGED locus.« less
  • The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerasemore » activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.« less
  • This invention relates to molecular and cellular biology and biochemistry. In one aspect, the invention provides polypeptides having cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts.