skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biases of the MET Temperature and Relative Humidity Sensor (HMP45) Report

Abstract

The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Quality (DQ) Office was alerted to a potential bias in the surface meteorological instrumentation (MET) temperature when compared with a nearby Mesonet station. This led to an investigation into this problem that was expanded to include many of the other extended facilities (EF) and both the temperature and relative humidity (RH) variables. For this study, the Mesonet was used as the standard reference due to results that showed an increased accuracy in high-humidity environments along with the fact that the Mesonet had previous documented a problem with the HMP45C sensors. Some differences between the sites were taken into account during the analysis: 1. ARM MET sensors were upgraded from an HMP35 to an HMP45 throughout 2007 2. Mesonet switched to aspirated shields in 2009 – To mitigate the differences between aspirated and non-aspirated measurements, data were only analyzed when the wind speed was higher than 3 m/s. This reduced the uncertainty for the non-aspirated measurements from 1.51 ºC to 0.4 ºC. 3. ARM MET is mounted 0.5m higher than the Mesonet station (2.0m versus 1.5m) – This is assumed to have a negligible effect on themore » differences. 4. Sites were not co-located – For some locations, the distances between sites were as much as 45 km. As part of the investigation into the differences, the Mesonet had reported that the HMP45 sensors had a low-temperature bias in high-humidity environments. This was verified at two different sites where the ARM measurements were compared with the Mesonet measurements. The Mesonet provided redundant temperature measurements from two different sensors at each site. These measurements compared fairly well, while the ARM sensor showed a bias overnight when the humidities were higher. After reviewing the yearly average differences in the data and analyzing the RH data during fog events when we assume it should be 100%, we determined that a majority of the sites have a bias in the RH compared to the Mesonet sites, but that only a few sites show a bias in the temperature measurements that are outside the range of instrument uncertainties. We note that there can be a lot of variability across some of the distances between the MET and Mesonet sites and these biases reported herein should not be used as offsets.« less

Authors:
 [1];  [2]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Univ. of Oklahoma, Norman, OK (United States)
Publication Date:
Research Org.:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1366737
Report Number(s):
DOE/SC-ARM-TR-192
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 54 ENVIRONMENTAL SCIENCES; Southern Great Plains; MESONET; MET; relative humidity; instrument calibration; data quality; temperature bias

Citation Formats

Kyrouac, Jenni, and Theisen, Adam. Biases of the MET Temperature and Relative Humidity Sensor (HMP45) Report. United States: N. p., 2017. Web. doi:10.2172/1366737.
Kyrouac, Jenni, & Theisen, Adam. Biases of the MET Temperature and Relative Humidity Sensor (HMP45) Report. United States. doi:10.2172/1366737.
Kyrouac, Jenni, and Theisen, Adam. Fri . "Biases of the MET Temperature and Relative Humidity Sensor (HMP45) Report". United States. doi:10.2172/1366737. https://www.osti.gov/servlets/purl/1366737.
@article{osti_1366737,
title = {Biases of the MET Temperature and Relative Humidity Sensor (HMP45) Report},
author = {Kyrouac, Jenni and Theisen, Adam},
abstractNote = {The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Quality (DQ) Office was alerted to a potential bias in the surface meteorological instrumentation (MET) temperature when compared with a nearby Mesonet station. This led to an investigation into this problem that was expanded to include many of the other extended facilities (EF) and both the temperature and relative humidity (RH) variables. For this study, the Mesonet was used as the standard reference due to results that showed an increased accuracy in high-humidity environments along with the fact that the Mesonet had previous documented a problem with the HMP45C sensors. Some differences between the sites were taken into account during the analysis: 1. ARM MET sensors were upgraded from an HMP35 to an HMP45 throughout 2007 2. Mesonet switched to aspirated shields in 2009 – To mitigate the differences between aspirated and non-aspirated measurements, data were only analyzed when the wind speed was higher than 3 m/s. This reduced the uncertainty for the non-aspirated measurements from 1.51 ºC to 0.4 ºC. 3. ARM MET is mounted 0.5m higher than the Mesonet station (2.0m versus 1.5m) – This is assumed to have a negligible effect on the differences. 4. Sites were not co-located – For some locations, the distances between sites were as much as 45 km. As part of the investigation into the differences, the Mesonet had reported that the HMP45 sensors had a low-temperature bias in high-humidity environments. This was verified at two different sites where the ARM measurements were compared with the Mesonet measurements. The Mesonet provided redundant temperature measurements from two different sensors at each site. These measurements compared fairly well, while the ARM sensor showed a bias overnight when the humidities were higher. After reviewing the yearly average differences in the data and analyzing the RH data during fog events when we assume it should be 100%, we determined that a majority of the sites have a bias in the RH compared to the Mesonet sites, but that only a few sites show a bias in the temperature measurements that are outside the range of instrument uncertainties. We note that there can be a lot of variability across some of the distances between the MET and Mesonet sites and these biases reported herein should not be used as offsets.},
doi = {10.2172/1366737},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jun 30 00:00:00 EDT 2017},
month = {Fri Jun 30 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: